Riesz basis of exponentials for convex polytopes with symmetric faces

Alberto Debernardi Pinos

Bar-Ilan University (BIU), Israel

based on a joint work with Nir Lev (BIU)

22 May 2020

Given a bounded measurable set $\Omega \subset \mathbb{R}^d$ of positive measure, when is it possible to find a countable set of frequencies $\Lambda \subset \mathbb{R}^d$ so that the system

$$E(\Lambda) := \{e_{\lambda}\}_{\lambda \in \Lambda}, \qquad e_{\lambda}(x) = e^{2\pi i \langle x, \lambda \rangle}$$

is a basis for $L^2(\Omega)$?

Given a bounded measurable set $\Omega \subset \mathbb{R}^d$ of positive measure, when is it possible to find a countable set of frequencies $\Lambda \subset \mathbb{R}^d$ so that the system

$$E(\Lambda) := \{e_{\lambda}\}_{\lambda \in \Lambda}, \qquad e_{\lambda}(x) = e^{2\pi i \langle x, \lambda \rangle}$$

is a basis for $L^2(\Omega)$?

The answer depends on what we mean by a **basis**!

In a Hilbert space H, orthonormal basis (ONB) are the best type of basis one can expect.

Recall

Great properties: if a system of vectors $\{f_n\}$ is an ONB for H, then for any $f \in H$

$$f = \sum \langle f, f_n \rangle f_n, \qquad \|f\| = \|\langle f, f_n \rangle\|_{\ell^2}.$$

Perfect reconstruction of f via its coefficients $\langle f, f_n \rangle$.

If $E(\Lambda)$ is an orthonormal basis for $L^2(\Omega)$, we say that Λ is a **spectrum** for Ω , and Ω is called a **spectral** set.

Classical example: Fourier basis $E(\mathbb{Z}^d)$ of $L^2([0,1]^d)$.

Question

Given an arbitrary set Ω , does there exist an ONB of exponential functions for $L^2(\Omega)$? (Does Ω admit a spectrum Λ ?)

Question

Given an arbitrary set Ω , does there exist an ONB of exponential functions for $L^2(\Omega)$? (Does Ω admit a spectrum Λ ?)

Answer: It depends on the geometry of Ω . More precisely, the answer is intimately related to the concept of **tiling** by translations.

Tiling by translations

Definition

We say that a measurable set $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations if there exists a (discrete) set $T \subset \mathbb{R}^d$ if

$$\bigcup_{t \in T} (\Omega + t) = \mathbb{R}^d,$$

and $|(\Omega + t) \cap (\Omega + t')| = 0$ for every $t, t' \in T$ such that $t \neq t'$. Equivalently,

$$\sum_{t \in T} \chi_{\Omega}(x-t) = 1 \quad \text{a.e. } x \in \mathbb{R}^d.$$

Tiling by translations

Definition

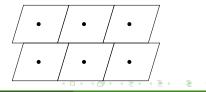
We say that a measurable set $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations if there exists a (discrete) set $T \subset \mathbb{R}^d$ if

$$\bigcup_{t \in T} (\Omega + t) = \mathbb{R}^d,$$

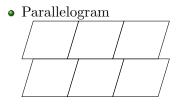
and $|(\Omega + t) \cap (\Omega + t')| = 0$ for every $t, t' \in T$ such that $t \neq t'$. Equivalently,

$$\sum_{t \in T} \chi_{\Omega}(x - t) = 1 \quad \text{a.e. } x \in \mathbb{R}^d.$$

• Tile:

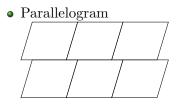


Sets that **tile** \mathbb{R}^2 by translations:



A 3 b

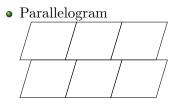
Sets that **tile** \mathbb{R}^2 by translations:



• Hexagon

B >

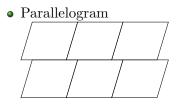
Sets that **tile** \mathbb{R}^2 by translations:



• Hexagon

Sets that **do not** tile \mathbb{R}^2 by translations:

Sets that **tile** \mathbb{R}^2 by translations:



• Hexagon

Sets that **do not** tile \mathbb{R}^2 by translations:

• Triangle

• Circle

Tilings and spectral sets: Fuglede conjecture

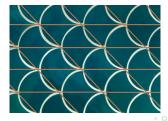
In 1974, B. Fuglede conjectured the following:

Conjecture

 $\Omega \subset \mathbb{R}^d$ admits a spectrum if and only if it tiles \mathbb{R}^d by translations.

He obtained partial results towards the conjecture:

- when Λ is a lattice, i.e., Λ = AZ^d for some invertible d × d matrix A. In this case, T = (A^T)⁻¹Z^d is the **dual lattice** of Λ, also denoted Λ*;
- when T is a lattice (and in this case $\Lambda = T^*$ is a spectrum for Ω).



One of the directions of the Fuglede conjecture (tiling \Rightarrow spectral) has been known to be true since long ago for convex sets Ω

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations, then Ω is a centrally symmetric polytope and moreover it tiles \mathbb{R}^d by lattice translations.

One of the directions of the Fuglede conjecture (tiling \Rightarrow spectral) has been known to be true since long ago for convex sets Ω

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations, then Ω is a centrally symmetric polytope and moreover it tiles \mathbb{R}^d by lattice translations.

By Fuglede's partial results, the "tiling \Rightarrow spectral" part of his conjecture follows from this theorem.

One of the directions of the Fuglede conjecture (tiling \Rightarrow spectral) has been known to be true since long ago for convex sets Ω

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations, then Ω is a centrally symmetric polytope and moreover it tiles \mathbb{R}^d by lattice translations.

By Fuglede's partial results, the "tiling \Rightarrow spectral" part of his conjecture follows from this theorem.

Remark

The statement of Venkov's theorem is much stronger!

• 2001, I. Łaba: true when Ω is a union of two intervals on \mathbb{R} ;

ヨト イヨト

- 2001, I. Laba: true when Ω is a union of two intervals on \mathbb{R} ;
- 2003, A. Iosevich, N. Katz, and T. Tao: true when Ω ⊂ ℝ² is convex (Ω is a parallelogram or a hexagon);

- 2001, I. Łaba: true when Ω is a union of two intervals on \mathbb{R} ;
- 2003, A. Iosevich, N. Katz, and T. Tao: true when $\Omega \subset \mathbb{R}^2$ is convex (Ω is a parallelogram or a hexagon);
- 2004, T. Tao: false for $d \ge 5$. More precisely, he found spectral sets $\Omega \subset \mathbb{R}^d$ that do not tile \mathbb{R}^d by translations (spectral \Rightarrow tiling);

- 2001, I. Łaba: true when Ω is a union of two intervals on \mathbb{R} ;
- 2003, A. Iosevich, N. Katz, and T. Tao: true when $\Omega \subset \mathbb{R}^2$ is convex (Ω is a parallelogram or a hexagon);
- 2004, T. Tao: false for $d \ge 5$. More precisely, he found spectral sets $\Omega \subset \mathbb{R}^d$ that do not tile \mathbb{R}^d by translations (spectral $\not\Rightarrow$ tiling);
- 2005, M. Matolcsi: false for d = 4 (spectral \neq tiling);

- 2001, I. Łaba: true when Ω is a union of two intervals on \mathbb{R} ;
- 2003, A. Iosevich, N. Katz, and T. Tao: true when $\Omega \subset \mathbb{R}^2$ is convex (Ω is a parallelogram or a hexagon);
- 2004, T. Tao: false for $d \ge 5$. More precisely, he found spectral sets $\Omega \subset \mathbb{R}^d$ that do not tile \mathbb{R}^d by translations (spectral $\not\Rightarrow$ tiling);
- 2005, M. Matolcsi: false for d = 4 (spectral \neq tiling);
- 2006, M. Kolountzakis and M. Matolcsi: for $d \ge 5$, tiling \Rightarrow spectral;
- 2006, M. Kolountzakis and M. Matolcsi: false for d = 3 (spectral \neq tiling);

ヘロト 人間ト 人間ト 人目ト

- 2006, B. Farkas and S. Révesz: for d = 4, tiling \Rightarrow spectral;
- 2006, B. Farkas, M. Matolcsi, and P. Móra: for d = 3, tiling \Rightarrow spectral;
 - ÷

- 2006, B. Farkas and S. Révesz: for d = 4, tiling \Rightarrow spectral;
- 2006, B. Farkas, M. Matolcsi, and P. Móra: for d = 3, tiling \Rightarrow spectral;
- 2017, R. Greenfeld and N. Lev: true when $\Omega \subset \mathbb{R}^3$ is convex;
- 2019, M. Matolcsi and N. Lev: true for all dimensions $d \ge 1$ when $\Omega \subset \mathbb{R}^d$ is convex.

•

- 2006, B. Farkas and S. Révesz: for d = 4, tiling \Rightarrow spectral;
- 2006, B. Farkas, M. Matolcsi, and P. Móra: for d = 3, tiling \Rightarrow spectral;
- 2017, R. Greenfeld and N. Lev: true when $\Omega \subset \mathbb{R}^3$ is convex;
- 2019, M. Matolcsi and N. Lev: true for all dimensions $d \ge 1$ when $\Omega \subset \mathbb{R}^d$ is convex.

Open problem

•

Is Fuglede conjecture true for general sets Ω in d = 1, 2?

- 2006, B. Farkas and S. Révesz: for d = 4, tiling \Rightarrow spectral;
- 2006, B. Farkas, M. Matolcsi, and P. Móra: for d = 3, tiling \Rightarrow spectral;
- 2017, R. Greenfeld and N. Lev: true when $\Omega \subset \mathbb{R}^3$ is convex;
- 2019, M. Matolcsi and N. Lev: true for all dimensions $d \ge 1$ when $\Omega \subset \mathbb{R}^d$ is convex.

Open problem

.

Is Fuglede conjecture true for general sets Ω in d = 1, 2?

• Many partial results...

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations, then Ω is a centrally symmetric polytope and moreover it tiles \mathbb{R}^d by lattice translations.

In this case the structure of Ω is very specific (in d = 2, Ω is a parallelogram or a hexagon). This makes the class of convex sets $\Omega \subset \mathbb{R}^d$ that admit a spectrum be rather small.

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body $\Omega \subset \mathbb{R}^d$ tiles \mathbb{R}^d by translations, then Ω is a centrally symmetric polytope and moreover it tiles \mathbb{R}^d by lattice translations.

In this case the structure of Ω is very specific (in $d = 2, \Omega$ is a parallelogram or a hexagon). This makes the class of convex sets $\Omega \subset \mathbb{R}^d$ that admit a spectrum be rather small.

Question

Can we find weaker structures than exponential ONBs that will provide a useful decomposition of $L^2(\Omega)$ for a larger class of convex sets Ω ?

・ロト ・回ト ・ヨト ・ヨト

In a Hilbert space H, we say that a system of vectors $\{f_n\} \subset H$ is a Riesz basis for H if it is the image of an orthonormal basis under a bounded linear invertible map.

In a Hilbert space H, we say that a system of vectors $\{f_n\} \subset H$ is a Riesz basis for H if it is the image of an orthonormal basis under a bounded linear invertible map.

Equivalent definition

A system of vectors $\{f_n\} \subset H$ is a Riesz basis for H if and only if every $f \in H$ admits a representation

$$f = \sum c_n f_n$$

and such that the coefficients $\{c_n\}$ satisfy the relation

$$A||f||^2 \le \sum |c_n|^2 \le B||f||^2,$$

where $0 < A \leq B$ do not depend on f.

In a Hilbert space H, we say that a system of vectors $\{f_n\} \subset H$ is a Riesz basis for H if it is the image of an orthonormal basis under a bounded linear invertible map.

Equivalent definition

A system of vectors $\{f_n\} \subset H$ is a Riesz basis for H if and only if it satisfies the following three conditions:

- 1. $\{f_n\}$ is complete in H (i.e., if $\langle f, f_n \rangle = 0$ for all n, then $f \equiv 0$);
- 2. for every $f \in H$ we have $\sum |\langle f, f_n \rangle|^2 < \infty$;
- 3. for any sequence $\{c_n\} \in \ell^2$ there exists $f \in H$ such that $\langle f, f_n \rangle = c_n$ for all n.

Example (Kadec's 1/4-Theorem)

If $\Lambda := \{\lambda_n\} \subset \mathbb{R}$ is such that

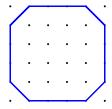
$$|\lambda_n - n| \le L < \frac{1}{4}$$
 for all $n \in \mathbb{Z}$,

then $E(\Lambda) = \{e^{2\pi i \lambda_n x}\}_{n \in \mathbb{Z}}$ is a Riesz basis for $L^2(0, 1)$. The constant 1/4 is sharp.

- 1953, A. Kohlenberg: existence whenever Ω ⊂ ℝ is the union of two intervals of equal length;
- 1995, K. Seip: existence whenever $\Omega \subset \mathbb{R}$ is the union of two arbitrary intervals (subcases with more intervals).

- 1953, A. Kohlenberg: existence whenever Ω ⊂ ℝ is the union of two intervals of equal length;
- 1995, K. Seip: existence whenever $\Omega \subset \mathbb{R}$ is the union of two arbitrary intervals (subcases with more intervals).
- 1997, Y. Lyubarskii and K. Seip: existence when Ω is the union of finitely many intervals of equal length.

- 1953, A. Kohlenberg: existence whenever Ω ⊂ ℝ is the union of two intervals of equal length;
- 1995, K. Seip: existence whenever $\Omega \subset \mathbb{R}$ is the union of two arbitrary intervals (subcases with more intervals).
- 1997, Y. Lyubarskii and K. Seip: existence when Ω is the union of finitely many intervals of equal length.
- 2000, Y. Lyubarskii and L. Rashkovskii: existence if $\Omega \subset \mathbb{R}^2$ is a centrally symmetric polygon whose vertices lie on \mathbb{Z}^2 .



• 2006, J. Marzo: existence when $\Omega \subset \mathbb{R}^d$ is the union of finitely many unit cubes.

- 2006, J. Marzo: existence when $\Omega \subset \mathbb{R}^d$ is the union of finitely many unit cubes.
- 2012, L. de Carli and A. Kumar: existence when $\Omega \subset \mathbb{R}^2$ is a "trapezoid".

Riesz basis of exponentials: known results

- 2006, J. Marzo: existence when $\Omega \subset \mathbb{R}^d$ is the union of finitely many unit cubes.
- 2012, L. de Carli and A. Kumar: existence when $\Omega \subset \mathbb{R}^2$ is a "trapezoid".
- 2014, S. Grepstad and N. Lev: existence if $\Omega \subset \mathbb{R}^d$ is a centrally symmetric polytope with centrally symmetric facets, with all vertices lying on \mathbb{Z}^d .

$$\sum_{t \in T} \chi_{\Omega}(x - t) = m \in \mathbb{N} \quad \text{a.e. } x \in \mathbb{R}^d$$

(multi-tiling by lattice translations).

Riesz basis of exponentials: known results

- 2006, J. Marzo: existence when $\Omega \subset \mathbb{R}^d$ is the union of finitely many unit cubes.
- 2012, L. de Carli and A. Kumar: existence when $\Omega \subset \mathbb{R}^2$ is a "trapezoid".
- 2014, S. Grepstad and N. Lev: existence if $\Omega \subset \mathbb{R}^d$ is a centrally symmetric polytope with centrally symmetric facets, with all vertices lying on \mathbb{Z}^d .

$$\sum_{t \in T} \chi_{\Omega}(x - t) = m \in \mathbb{N} \quad \text{a.e. } x \in \mathbb{R}^d$$

(multi-tiling by lattice translations).

- 2015, G. Kozma and S. Nitzan: existence if Ω a union of intervals on \mathbb{R} .
- 2016, G. Kozma and S. Nitzan: existence if Ω a union of rectangles on \mathbb{R}^d .

ヘロト 人間ト 人団ト 人団ト

Riesz basis of exponentials: known results

- 2006, J. Marzo: existence when $\Omega \subset \mathbb{R}^d$ is the union of finitely many unit cubes.
- 2012, L. de Carli and A. Kumar: existence when $\Omega \subset \mathbb{R}^2$ is a "trapezoid".
- 2014, S. Grepstad and N. Lev: existence if $\Omega \subset \mathbb{R}^d$ is a centrally symmetric polytope with centrally symmetric facets, with all vertices lying on \mathbb{Z}^d .

$$\sum_{t \in T} \chi_{\Omega}(x - t) = m \in \mathbb{N} \quad \text{a.e. } x \in \mathbb{R}^d$$

(multi-tiling by lattice translations).

- 2015, G. Kozma and S. Nitzan: existence if Ω a union of intervals on \mathbb{R} .
- 2016, G. Kozma and S. Nitzan: existence if Ω a union of rectangles on \mathbb{R}^d .
- 2017, D. Walnut: same conclusion as Y. Lyubarskii and A. Rashkovskii, different approach.

Theorem (D., Lev)

Let Ω be a centrally symmetric polytope on \mathbb{R}^d , whose faces of all dimensions are centrally symmetric. Then $L^2(\Omega)$ admits a Riesz basis of exponentials $E(\Lambda)$.

Theorem (D., Lev)

Let Ω be a centrally symmetric polytope on \mathbb{R}^d , whose faces of all dimensions are centrally symmetric. Then $L^2(\Omega)$ admits a Riesz basis of exponentials $E(\Lambda)$.

The proof is based on a recent approach due to D. Walnut (d = 2). We also need the Paley-Wiener stability theorem:

Theorem

Let Ω be a bounded set and let $\Lambda = \{\lambda_n\}$ be a sequence of points such that $E(\Lambda)$ is a Riesz basis for $L^2(\Omega)$. Then there exists a constant $\eta = \eta(\Omega, \Lambda) > 0$ such that if a sequence $\Lambda' = \{\lambda'_n\}$ satisfies

$$|\lambda_n - \lambda'_n| \le \eta$$

for all n, then $E(\Lambda')$ is also a Riesz basis for $L^2(\Omega)$.

Paley-Wiener spaces of functions

For a bounded measurable set $\Omega \subset \mathbb{R}^d$ of positive measure, the Paley-Wiener space $PW(\Omega)$ is the set of all $F \in L^2(\mathbb{R}^d)$ satisfying

$$F(x) = \int_{\Omega} f(t) e^{-2\pi i \langle x, t \rangle} dt, \quad f \in L^{2}(\Omega),$$

i.e., the space of Fourier transforms of $f \in L^2(\Omega)$.

Paley-Wiener spaces of functions

For a bounded measurable set $\Omega \subset \mathbb{R}^d$ of positive measure, the Paley-Wiener space $PW(\Omega)$ is the set of all $F \in L^2(\mathbb{R}^d)$ satisfying

$$F(x) = \int_{\Omega} f(t) e^{-2\pi i \langle x, t \rangle} dt, \quad f \in L^{2}(\Omega),$$

i.e., the space of Fourier transforms of $f \in L^2(\Omega)$.

Definition

A set $\Lambda \subset \mathbb{R}^d$ is called a set of **uniqueness** for $PW(\Omega)$ if whenever $F \in PW(\Omega)$ satisfies $F(\lambda) = 0$ for every $\lambda \in \Lambda$, then $F \equiv 0$. In other words, F is uniquely determined by its values in Λ .

Definition

A set $\Lambda \subset \mathbb{R}^d$ is called a set of **interpolation** for $PW(\Omega)$ if for any $\{c_{\lambda}\} \in \ell^2(\Lambda)$ there exists at least one $F \in PW(\Omega)$ such that $F(\lambda) = c_{\lambda}$ for all $\lambda \in \Lambda$.

Characterization of Riesz bases of exponentials

The following is well known:

Proposition

 $E(\Lambda)$ is a Riesz basis for $L^2(\Omega)$ if and only if Λ is a set of uniqueness and interpolation for $PW(\Omega)$.

The proof of our main result consists in constructing sets Λ of interpolation and uniqueness for $PW(\Omega)$.

Characterization of Riesz bases of exponentials

The following is well known:

Proposition

 $E(\Lambda)$ is a Riesz basis for $L^2(\Omega)$ if and only if Λ is a set of uniqueness and interpolation for $PW(\Omega)$.

The proof of our main result consists in constructing sets Λ of interpolation and uniqueness for $PW(\Omega)$.

Proposition

If Λ is a set of interpolation for $PW(\Omega)$, then Λ is uniformly discrete.

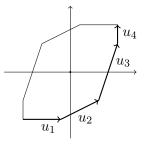
We say that $\Lambda \subset \mathbb{R}^d$ is a **uniformly discrete** set if

$$\inf_{\lambda,\lambda'\in\Lambda} |\lambda - \lambda'| \ge c > 0.$$

Proof of the main result (2 dimensions)

Any centrally symmetric polygon $\Omega_N \subset \mathbb{R}^2$ with 2N sides is a Minkowski sum of N vectors u_1, \ldots, u_N :

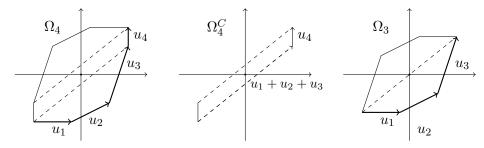
$$\Omega_N = \Omega(u_1, \dots, u_N) = \left\{ \sum_{k=1}^N t_k u_k : -\frac{1}{2} \le t_k \le \frac{1}{2}, \, k = 1, \dots, N \right\},\,$$



Notation

Denote $\Omega_{N-1} = \Omega(u_1, \ldots, u_{N-1})$, and Ω_N^C the central parallelogram of Ω_N (given by u_N). Formally,

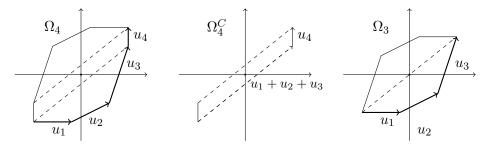
$$\Omega_N^C = \left\{ t_1 \sum_{k=1}^{N-1} u_k + t_2 u_N : -\frac{1}{2} \le t_1, t_2 \le \frac{1}{2} \right\}.$$



Lemma

For any $F \in PW(\Omega_N)$ there exist functions $G \in PW(\Omega_{N-1})$ and $H \in PW(\Omega_N^C)$ such that

$$F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x)$$



Lemma

For any $F \in PW(\Omega_N)$ there exist functions $G \in PW(\Omega_{N-1})$ and $H \in PW(\Omega_N^C)$ such that

$$F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x)$$

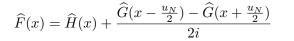
First we write

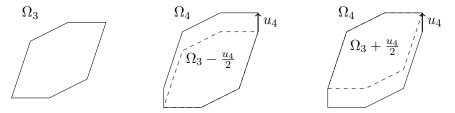
$$\sin(\pi \langle x, u_N \rangle) = \frac{e^{2\pi i \langle x, \frac{u_N}{2} \rangle} - e^{-2\pi i \langle x, \frac{u_N}{2} \rangle}}{2i}$$

Taking Fourier transforms,

$$\widehat{F}(x) = \widehat{H}(x) + \frac{\widehat{G}(x - \frac{u_N}{2}) - \widehat{G}(x + \frac{u_N}{2})}{2i}$$

Decomposition lemma - idea of the proof II





 \widehat{G} can be chosen in a way that

$$\widehat{F}(x) = \frac{\widehat{G}(x - \frac{u_N}{2}) - \widehat{G}(x + \frac{u_N}{2})}{2i}, \quad x \in \Omega_N \setminus \Omega_N^C$$

Finding a Riesz basis for Ω_N is equivalent to finding a set of uniqueness and interpolation for $PW(\Omega_N)$.

Assume there exists a Riesz basis $E(\Lambda_{N-1})$ for Ω_{N-1} .

$$F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x),$$

 $F \in PW(\Omega_N), H \in PW(\Omega_N^C), \text{ and } G \in PW(\Omega_{N-1}).$

Finding a Riesz basis for Ω_N is equivalent to finding a set of uniqueness and interpolation for $PW(\Omega_N)$.

Assume there exists a Riesz basis $E(\Lambda_{N-1})$ for Ω_{N-1} .

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x),$

 $F \in PW(\Omega_N), H \in PW(\Omega_N^C)$, and $G \in PW(\Omega_{N-1})$. Let $E(\Delta_N)$ be an orthonormal basis for $L^2(\Omega_N^C)$. Is

$$\Lambda_{N-1} \cup \Delta_N$$

a set of uniqueness and interpolation for $PW(\Omega_N)$?

ヘロト 人間 とくほ とくほ とう

Finding a Riesz basis for Ω_N is equivalent to finding a set of uniqueness and interpolation for $PW(\Omega_N)$.

Assume there exists a Riesz basis $E(\Lambda_{N-1})$ for Ω_{N-1} .

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x),$

 $F \in PW(\Omega_N), H \in PW(\Omega_N^C)$, and $G \in PW(\Omega_{N-1})$. Let $E(\Delta_N)$ be an orthonormal basis for $L^2(\Omega_N^C)$. Is

$$\Lambda_{N-1} \cup \Delta_N$$

a set of uniqueness and interpolation for $PW(\Omega_N)$? Not necessarily!

ヘロト 人間 とくほ とくほ とう

We check if $\Lambda_{N-1} \cup \Delta_N$ is a set of uniqueness for $PW(\Omega_N)$. Denote by Z_N the set of zeros of $\sin(\pi \langle x, u_N \rangle)$, and assume $F(\lambda) = 0$ for all $\lambda \in \Lambda_{N-1} \cup \Delta_N$.

We check if $\Lambda_{N-1} \cup \Delta_N$ is a set of uniqueness for $PW(\Omega_N)$. Denote by Z_N the set of zeros of $\sin(\pi \langle x, u_N \rangle)$, and assume $F(\lambda) = 0$ for all $\lambda \in \Lambda_{N-1} \cup \Delta_N$.

• It is easy to check that $\Delta_N \subset Z_N$. If $\delta \in \Delta_N$,

 $F(\delta) = H(\delta) + \sin(\pi \langle \delta, u_N \rangle) G(\delta) = H(\delta) = 0.$

This implies $H \equiv 0$ (since $H \in PW(\Omega_N^C)$), so $F(x) = \sin(\pi \langle x, u_N \rangle) G(x)$.

We check if $\Lambda_{N-1} \cup \Delta_N$ is a set of uniqueness for $PW(\Omega_N)$. Denote by Z_N the set of zeros of $\sin(\pi \langle x, u_N \rangle)$, and assume $F(\lambda) = 0$ for all $\lambda \in \Lambda_{N-1} \cup \Delta_N$.

• It is easy to check that $\Delta_N \subset Z_N$. If $\delta \in \Delta_N$,

$$F(\delta) = H(\delta) + \sin(\pi \langle \delta, u_N \rangle) G(\delta) = H(\delta) = 0.$$

This implies $H \equiv 0$ (since $H \in PW(\Omega_N^C)$), so $F(x) = \sin(\pi \langle x, u_N \rangle) G(x)$.

• What if there exists $\lambda \in \Lambda_{N-1}$ such that $\lambda \in Z_N$?

$$F(\lambda) = \sin(\pi \langle \lambda, u_N \rangle) G(\lambda) = 0 \not\Rightarrow G(\lambda) = 0.$$

Construction of the Riesz basis - set of uniqueness

We check if $\Lambda_{N-1} \cup \Delta_N$ is a set of uniqueness for $PW(\Omega_N)$. Denote by Z_N the set of zeros of $\sin(\pi \langle x, u_N \rangle)$, and assume $F(\lambda) = 0$ for all $\lambda \in \Lambda_{N-1} \cup \Delta_N$.

• It is easy to check that $\Delta_N \subset Z_N$. If $\delta \in \Delta_N$,

$$F(\delta) = H(\delta) + \sin(\pi \langle \delta, u_N \rangle) G(\delta) = H(\delta) = 0.$$

This implies $H \equiv 0$ (since $H \in PW(\Omega_N^C)$), so $F(x) = \sin(\pi \langle x, u_N \rangle) G(x)$.

• What if there exists $\lambda \in \Lambda_{N-1}$ such that $\lambda \in Z_N$?

$$F(\lambda) = \sin(\pi \langle \lambda, u_N \rangle) G(\lambda) = 0 \not\Rightarrow G(\lambda) = 0.$$

Remark

The sets Z_N and Λ_{N-1} must not have common points!

A. Debernardi Pinos – BIU

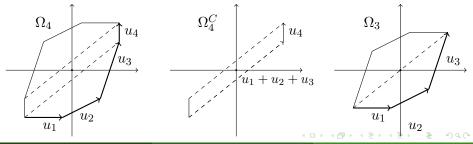
Construction of the Riesz basis - set of uniqueness

Corollary

If Δ_N is a set of uniqueness for $PW(\Omega_N^C)$ and Λ_{N-1} is a set of uniqueness for $PW(\Omega_{N-1})$ such that

$$\{x \in \mathbb{R}^2 : \sin(\pi \langle x, u_N \rangle) = 0\} \cap \Lambda_{N-1} = \emptyset,$$

then $\Delta_N \cup \Lambda_{N-1}$ is a set of uniqueness for $PW(\Omega_N)$.



A. Debernardi Pinos – BIU

Remark

In the case of sets of interpolation, the situation is worse. We need the sets Z_N and Λ_{N-1} to be **separated**, i.e.,

$$\inf_{\lambda \in \Lambda_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| > 0.$$

Remark

In the case of sets of interpolation, the situation is worse. We need the sets Z_N and Λ_{N-1} to be **separated**, i.e.,

$$\inf_{\lambda \in \Lambda_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| > 0.$$

The stability theorem comes into play:

Theorem (Paley-Wiener stability theorem)

Let Ω be a bounded set and let $\Lambda = \{\lambda_n\}$ be a sequence of points such that $E(\Lambda)$ is a Riesz basis for $L^2(\Omega)$. Then there exists a constant $\eta = \eta(\Omega, \Lambda) > 0$ such that if a sequence $\Lambda' = \{\lambda'_n\}$ satisfies

$$|\lambda_n - \lambda'_n| \le \eta$$

for all n, then $E(\Lambda')$ is also a Riesz basis for $L^2(\Omega)$.

Remark

In the case of sets of interpolation, the situation is worse. We need the sets Z_N and Λ_{N-1} to be **separated**, i.e.,

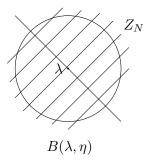
$$\inf_{\lambda \in \Lambda_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| > 0.$$

Goal: To slightly perturb the set Λ_{N-1} to obtain a set Λ'_{N-1} , so that

- it is still a set of uniqueness and interpolation for $PW(\Omega_{N-1})$;
- Λ'_{N-1} and Z_N are separated.

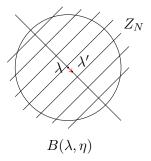
Perturbation method

Let $\eta > 0$ be the constant from the Paley-Wiener perturbation theorem. For any $\lambda \in \Lambda_{N-1}$,



Perturbation method

Let $\eta > 0$ be the constant from the Paley-Wiener perturbation theorem. For any $\lambda \in \Lambda_{N-1}$,



Define $\Lambda'_{N-1} = \{\lambda'_n\}$. Then $\inf_{\lambda' \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda', u_N \rangle)| \ge c(\eta, \Lambda_{N-1}, u_N) > 0.$

A. Debernardi Pinos – BIU

イロト イヨト イヨト イヨト

A set $\Lambda \subset \mathbb{R}^d$ is a set of **interpolation** for $PW(\Omega)$ if for any $\{c_{\lambda}\} \in \ell^2(\Lambda)$ there exists at least one $F \in PW(\Omega)$ such that $F(\lambda) = c_{\lambda}$ for all $\lambda \in \Lambda$.

A set $\Lambda \subset \mathbb{R}^d$ is a set of **interpolation** for $PW(\Omega)$ if for any $\{c_{\lambda}\} \in \ell^2(\Lambda)$ there exists at least one $F \in PW(\Omega)$ such that $F(\lambda) = c_{\lambda}$ for all $\lambda \in \Lambda$.

Let Δ_N and Λ_{N-1} be sets of interpolation for $PW(\Omega_N^C)$ and $PW(\Omega_{N-1})$, respectively.

• Perturb Λ_{N-1} to obtain Λ'_{N-1} so that

$$\inf_{\lambda' \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda', u_N \rangle)| \ge c > 0,$$

preserving interpolation properties for $PW(\Omega_{N-1})$.

A set $\Lambda \subset \mathbb{R}^d$ is a set of **interpolation** for $PW(\Omega)$ if for any $\{c_{\lambda}\} \in \ell^2(\Lambda)$ there exists at least one $F \in PW(\Omega)$ such that $F(\lambda) = c_{\lambda}$ for all $\lambda \in \Lambda$.

Let Δ_N and Λ_{N-1} be sets of interpolation for $PW(\Omega_N^C)$ and $PW(\Omega_{N-1})$, respectively.

• Perturb Λ_{N-1} to obtain Λ'_{N-1} so that

$$\inf_{\lambda' \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda', u_N \rangle)| \ge c > 0,$$

preserving interpolation properties for $PW(\Omega_{N-1})$.

• Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

A. Debernardi Pinos – BIU

Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x), \quad H \in PW(\Omega_N^C), \ G \in PW(\Omega_{N-1}).$

Let $\{c_{\lambda}\} \in \ell^2(\Lambda_N) = \ell^2(\Delta_N \cup \Lambda'_{N-1}).$

• Let $H \in PW(\Omega_N^C)$ be such that $H(\delta) = c_{\delta} = F(\delta)$ for all $\delta \in \Delta_N$.

Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x), \quad H \in PW(\Omega_N^C), \ G \in PW(\Omega_{N-1}).$

Let $\{c_{\lambda}\} \in \ell^2(\Lambda_N) = \ell^2(\Delta_N \cup \Lambda'_{N-1}).$

- Let $H \in PW(\Omega_N^C)$ be such that $H(\delta) = c_{\delta} = F(\delta)$ for all $\delta \in \Delta_N$.
- Since $\inf_{\lambda \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| \ge c$,

$$\left\{\frac{c_{\lambda} - H(\lambda)}{\sin(\langle \lambda, u_N \rangle)}\right\} \in \ell^2(\Lambda'_{N-1}).$$

イロト イポト イヨト イヨト 三日

Claim:
$$\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$$
 is a set of interpolation for $PW(\Omega_N)$.
 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x), \quad H \in PW(\Omega_N^C), \ G \in PW(\Omega_{N-1}).$
Let $\{c_\lambda\} \in \ell^2(\Lambda_N) = \ell^2(\Delta_N \cup \Lambda'_{N-1}).$
• Let $H \in PW(\Omega_N^C)$ be such that $H(\delta) = c_\delta = F(\delta)$ for all $\delta \in \Delta_N$.
• Since $\inf_{\lambda \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| \ge c$,

$$\left\{\frac{c_{\lambda} - H(\lambda)}{\sin(\langle \lambda, u_N \rangle)}\right\} \in \ell^2(\Lambda'_{N-1}).$$

Lemma

If $\Omega \subset \mathbb{R}^d$ is bounded and of positive measure, for any **uniformly** discrete set $\Lambda \subset \mathbb{R}^d$ there is a constant $C = C(\Lambda, \Omega)$ such that

$$\sum_{\lambda \in \Lambda} |H(\lambda)|^2 \le C ||H||^2_{L^2(\mathbb{R}^d)}$$

프 문 문 프 문

Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x), \quad H \in PW(\Omega_N^C), \ G \in PW(\Omega_{N-1}).$

Let $\{c_{\lambda}\} \in \ell^2(\Lambda_N) = \ell^2(\Delta_N \cup \Lambda'_{N-1}).$

- Let $H \in PW(\Omega_N^C)$ be such that $H(\delta) = c_{\delta} = F(\delta)$ for all $\delta \in \Delta_N$.
- Since $\inf_{\lambda \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| \ge c$,

$$\left\{\frac{c_{\lambda}-H(\lambda)}{\sin(\langle\lambda,u_N\rangle)}\right\} \in \ell^2(\Lambda'_{N-1}).$$

• Let $G \in PW(\Omega_{N-1})$ be such that

$$G(\lambda) = \frac{c_{\lambda} - H(\lambda)}{\sin(\langle \lambda, u_N \rangle)}, \qquad \lambda \in \Lambda'_{N-1}.$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Claim: $\Lambda_N := \Delta_N \cup \Lambda'_{N-1}$ is a set of interpolation for $PW(\Omega_N)$.

 $F(x) = H(x) + \sin(\pi \langle x, u_N \rangle) G(x), \quad H \in PW(\Omega_N^C), \ G \in PW(\Omega_{N-1}).$

Let $\{c_{\lambda}\} \in \ell^2(\Lambda_N) = \ell^2(\Delta_N \cup \Lambda'_{N-1}).$

- Let $H \in PW(\Omega_N^C)$ be such that $H(\delta) = c_{\delta} = F(\delta)$ for all $\delta \in \Delta_N$.
- Since $\inf_{\lambda \in \Lambda'_{N-1}} |\sin(\pi \langle \lambda, u_N \rangle)| \ge c$,

$$\left\{\frac{c_{\lambda}-H(\lambda)}{\sin(\langle\lambda,u_N\rangle)}\right\} \in \ell^2(\Lambda'_{N-1}).$$

• Let $G \in PW(\Omega_{N-1})$ be such that

$$G(\lambda) = \frac{c_{\lambda} - H(\lambda)}{\sin(\langle \lambda, u_N \rangle)}, \qquad \lambda \in \Lambda'_{N-1}.$$

• We are done!

A. Debernardi Pinos – BIU

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$\Omega_N = \left\{ \sum_{k=1}^N t_k u_k : -\frac{1}{2} \le t_k \le \frac{1}{2}, \, k = 1, \dots, N \right\}, \quad u_k \in \mathbb{R}^d.$$

→ E → < E →</p>

$$\Omega_N = \left\{ \sum_{k=1}^N t_k u_k : -\frac{1}{2} \le t_k \le \frac{1}{2}, \, k = 1, \dots, N \right\}, \quad u_k \in \mathbb{R}^d.$$

• Similar decomposition lemma.

$$\Omega_N = \left\{ \sum_{k=1}^N t_k u_k : -\frac{1}{2} \le t_k \le \frac{1}{2}, \, k = 1, \dots, N \right\}, \quad u_k \in \mathbb{R}^d.$$

- Similar decomposition lemma.
- Induction on N and d.

$$\Omega_N = \left\{ \sum_{k=1}^N t_k u_k : -\frac{1}{2} \le t_k \le \frac{1}{2}, \, k = 1, \dots, N \right\}, \quad u_k \in \mathbb{R}^d.$$

- Similar decomposition lemma.
- Induction on N and d.
- Similar perturbation method.

• The structure of the set Λ can be very irregular.

3

프 > (프 >

• The structure of the set Λ can be very irregular.

• Although it may not be easy, Λ can be written down explicitly.

- E - E

• The structure of the set Λ can be very irregular.

• Although it may not be easy, Λ can be written down explicitly.

• Poor control of "Riesz" constants

$$A||f||^2 \le \sum |c_n|^2 \le B||f||^2.$$

• Find a Riesz basis of exponentials for the circle/triangle...

B >

• Find a Riesz basis of exponentials for the circle/triangle...

• ... or prove they do not admit one.

• Find a Riesz basis of exponentials for the circle/triangle...

• ... or prove they do not admit one.

• Does there exist a (nontrivial) set that does not admit a Riesz basis of exponentials?

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで