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Introduction

Given a bounded measurable set Ω ⊂ Rd of positive measure, when is it
possible to find a countable set of frequencies Λ ⊂ Rd so that the
system

E(Λ) := {eλ}λ∈Λ, eλ(x) = e2πi〈x,λ〉

is a basis for L2(Ω)?

The answer depends on what we mean by a basis!
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Orthonormal basis

In a Hilbert space H, orthonormal basis (ONB) are the best type of
basis one can expect.

Recall

Great properties: if a system of vectors {fn} is an ONB for H, then for
any f ∈ H

f =
∑
〈f, fn〉fn, ‖f‖ = ‖〈f, fn〉‖`2 .

Perfect reconstruction of f via its coefficients 〈f, fn〉.

If E(Λ) is an orthonormal basis for L2(Ω), we say that Λ is a
spectrum for Ω, and Ω is called a spectral set.

Classical example: Fourier basis E(Zd) of L2([0, 1]d).
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Orthonormal basis of exponentials

Question

Given an arbitrary set Ω, does there exist an ONB of exponential
functions for L2(Ω)? (Does Ω admit a spectrum Λ?)

Answer: It depends on the geometry of Ω. More precisely, the answer
is intimately related to the concept of tiling by translations.
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Tiling by translations

Definition

We say that a measurable set Ω ⊂ Rd tiles Rd by translations if there
exists a (discrete) set T ⊂ Rd if⋃

t∈T
(Ω + t) = Rd,

and |(Ω + t) ∩ (Ω + t′)| = 0 for every t, t′ ∈ T such that t 6= t′.
Equivalently, ∑

t∈T
χΩ(x− t) = 1 a.e. x ∈ Rd.

Tile:

Ω
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Tiling sets: examples

Sets that tile R2 by translations:

Parallelogram

Hexagon

Sets that do not tile R2 by translations:

Triangle Circle
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Tilings and spectral sets: Fuglede conjecture

In 1974, B. Fuglede conjectured the following:

Conjecture

Ω ⊂ Rd admits a spectrum if and only if it tiles Rd by translations.

He obtained partial results towards the conjecture:

when Λ is a lattice, i.e., Λ = AZd for some invertible d× d matrix
A. In this case, T = (AT )−1Zd is the dual lattice of Λ, also
denoted Λ∗;

when T is a lattice (and in this case Λ = T ∗ is a spectrum for Ω).
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Tiling convex sets

One of the directions of the Fuglede conjecture (tiling ⇒ spectral) has
been known to be true since long ago for convex sets Ω

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Ω ⊂ Rd tiles Rd by translations, then Ω is a centrally
symmetric polytope and moreover it tiles Rd by lattice translations.

By Fuglede’s partial results, the “tiling ⇒ spectral” part of his
conjecture follows from this theorem.

Remark

The statement of Venkov’s theorem is much stronger!
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The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

2001, I.  Laba: true when Ω is a union of two intervals on R;

2003, A. Iosevich, N. Katz, and T. Tao: true when Ω ⊂ R2 is
convex (Ω is a parallelogram or a hexagon);

2004, T. Tao: false for d ≥ 5. More precisely, he found spectral
sets Ω ⊂ Rd that do not tile Rd by translations (spectral 6⇒ tiling);

2005, M. Matolcsi: false for d = 4 (spectral 6⇒ tiling);

2006, M. Kolountzakis and M. Matolcsi: for d ≥ 5, tiling 6⇒
spectral;

2006, M. Kolountzakis and M. Matolcsi: false for d = 3 (spectral
6⇒ tiling);
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The Fuglede conjecture after 2000

2006, B. Farkas and S. Révesz: for d = 4, tiling 6⇒ spectral;

2006, B. Farkas, M. Matolcsi, and P. Móra: for d = 3, tiling 6⇒
spectral;
...

2017, R. Greenfeld and N. Lev: true when Ω ⊂ R3 is convex;

2019, M. Matolcsi and N. Lev: true for all dimensions d ≥ 1 when
Ω ⊂ Rd is convex.

Open problem

Is Fuglede conjecture true for general sets Ω in d = 1, 2?

Many partial results...
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Looking for alternatives to exponential ONBs

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Ω ⊂ Rd tiles Rd by translations, then Ω is a centrally
symmetric polytope and moreover it tiles Rd by lattice translations.

In this case the structure of Ω is very specific (in d = 2, Ω is a
parallelogram or a hexagon). This makes the class of convex sets
Ω ⊂ Rd that admit a spectrum be rather small.

Question

Can we find weaker structures than exponential ONBs that will provide
a useful decomposition of L2(Ω) for a larger class of convex sets Ω?
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Riesz bases

In a Hilbert space H, we say that a system of vectors {fn} ⊂ H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.
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Riesz bases

In a Hilbert space H, we say that a system of vectors {fn} ⊂ H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.

Equivalent definition

A system of vectors {fn} ⊂ H is a Riesz basis for H if and only if every
f ∈ H admits a representation

f =
∑

cnfn

and such that the coefficients {cn} satisfy the relation

A‖f‖2 ≤
∑
|cn|2 ≤ B‖f‖2,

where 0 < A ≤ B do not depend on f .
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Riesz bases

In a Hilbert space H, we say that a system of vectors {fn} ⊂ H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.

Equivalent definition

A system of vectors {fn} ⊂ H is a Riesz basis for H if and only if it
satisfies the following three conditions:

1. {fn} is complete in H (i.e., if 〈f, fn〉 = 0 for all n, then f ≡ 0);

2. for every f ∈ H we have
∑
|〈f, fn〉|2 <∞;

3. for any sequence {cn} ∈ `2 there exists f ∈ H such that
〈f, fn〉 = cn for all n.
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Riesz bases of exponentials - a simple example

Example (Kadec’s 1/4-Theorem)

If Λ := {λn} ⊂ R is such that

|λn − n| ≤ L <
1

4
for all n ∈ Z,

then E(Λ) = {e2πiλnx}n∈Z is a Riesz basis for L2(0, 1). The constant
1/4 is sharp.
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Riesz basis of exponentials: known results

1953, A. Kohlenberg: existence whenever Ω ⊂ R is the union of
two intervals of equal length;

1995, K. Seip: existence whenever Ω ⊂ R is the union of two
arbitrary intervals (subcases with more intervals).

1997, Y. Lyubarskii and K. Seip: existence when Ω is the union of
finitely many intervals of equal length.

2000, Y. Lyubarskii and L. Rashkovskii: existence if Ω ⊂ R2 is a
centrally symmetric polygon whose vertices lie on Z2.
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Riesz basis of exponentials: known results

2006, J. Marzo: existence when Ω ⊂ Rd is the union of finitely
many unit cubes.

2012, L. de Carli and A. Kumar: existence when Ω ⊂ R2 is a
“trapezoid”.

2014, S. Grepstad and N. Lev: existence if Ω ⊂ Rd is a centrally
symmetric polytope with centrally symmetric facets, with all
vertices lying on Zd.∑

t∈T
χΩ(x− t) = m ∈ N a.e. x ∈ Rd

(multi-tiling by lattice translations).

2015, G. Kozma and S. Nitzan: existence if Ω a union of intervals
on R.

2016, G. Kozma and S. Nitzan: existence if Ω a union of rectangles
on Rd.
2017, D. Walnut: same conclusion as Y. Lyubarskii and A.
Rashkovskii, different approach.
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Main result

Theorem (D., Lev)

Let Ω be a centrally symmetric polytope on Rd, whose faces of all
dimensions are centrally symmetric. Then L2(Ω) admits a Riesz basis
of exponentials E(Λ).

The proof is based on a recent approach due to D. Walnut (d = 2). We
also need the Paley-Wiener stability theorem:

Theorem

Let Ω be a bounded set and let Λ = {λn} be a sequence of points such
that E(Λ) is a Riesz basis for L2(Ω). Then there exists a constant
η = η(Ω,Λ) > 0 such that if a sequence Λ′ = {λ′n} satisfies

|λn − λ′n| ≤ η

for all n, then E(Λ′) is also a Riesz basis for L2(Ω).
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Paley-Wiener spaces of functions

For a bounded measurable set Ω ⊂ Rd of positive measure, the
Paley-Wiener space PW (Ω) is the set of all F ∈ L2(Rd) satisfying

F (x) =

∫
Ω
f(t)e−2πi〈x,t〉 dt, f ∈ L2(Ω),

i.e., the space of Fourier transforms of f ∈ L2(Ω).

Definition

A set Λ ⊂ Rd is called a set of uniqueness for PW (Ω) if whenever
F ∈ PW (Ω) satisfies F (λ) = 0 for every λ ∈ Λ, then F ≡ 0. In other
words, F is uniquely determined by its values in Λ.

Definition

A set Λ ⊂ Rd is called a set of interpolation for PW (Ω) if for any
{cλ} ∈ `2(Λ) there exists at least one F ∈ PW (Ω) such that F (λ) = cλ
for all λ ∈ Λ.
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Characterization of Riesz bases of exponentials

The following is well known:

Proposition

E(Λ) is a Riesz basis for L2(Ω) if and only if Λ is a set of uniqueness
and interpolation for PW (Ω).

The proof of our main result consists in constructing sets Λ of
interpolation and uniqueness for PW (Ω).

Proposition

If Λ is a set of interpolation for PW (Ω), then Λ is uniformly discrete.

We say that Λ ⊂ Rd is a uniformly discrete set if

inf
λ,λ′∈Λ

|λ− λ′| ≥ c > 0.

A. Debernardi Pinos – BIU 18 / 34



Characterization of Riesz bases of exponentials

The following is well known:

Proposition

E(Λ) is a Riesz basis for L2(Ω) if and only if Λ is a set of uniqueness
and interpolation for PW (Ω).

The proof of our main result consists in constructing sets Λ of
interpolation and uniqueness for PW (Ω).

Proposition

If Λ is a set of interpolation for PW (Ω), then Λ is uniformly discrete.

We say that Λ ⊂ Rd is a uniformly discrete set if

inf
λ,λ′∈Λ

|λ− λ′| ≥ c > 0.

A. Debernardi Pinos – BIU 18 / 34



Proof of the main result (2 dimensions)

Any centrally symmetric polygon ΩN ⊂ R2 with 2N sides is a
Minkowski sum of N vectors u1, . . . , uN :

ΩN = Ω(u1, . . . , uN ) =

{ N∑
k=1

tkuk : −1

2
≤ tk ≤

1

2
, k = 1, . . . , N

}
,

u1
u2

u3

u4
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Notation

Denote ΩN−1 = Ω(u1, . . . , uN−1), and ΩC
N the central parallelogram of

ΩN (given by uN ). Formally,

ΩC
N =

{
t1

N−1∑
k=1

uk + t2uN : −1

2
≤ t1, t2 ≤

1

2

}
.

Ω4

u1
u2

u3

u4
ΩC

4 u4

u1 + u2 + u3

Ω3

u1 u2

u3
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Decomposition lemma

Lemma

For any F ∈ PW (ΩN ) there exist functions G ∈ PW (ΩN−1) and
H ∈ PW (ΩC

N ) such that

F (x) = H(x) + sin(π〈x, uN 〉)G(x)

Ω4

u1
u2

u3

u4
ΩC

4 u4

u1 + u2 + u3

Ω3

u1 u2

u3
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Decomposition lemma - idea of the proof

Lemma

For any F ∈ PW (ΩN ) there exist functions G ∈ PW (ΩN−1) and
H ∈ PW (ΩC

N ) such that

F (x) = H(x) + sin(π〈x, uN 〉)G(x)

First we write

sin(π〈x, uN 〉) =
e2πi〈x,uN

2
〉 − e−2πi〈x,uN

2
〉

2i

Taking Fourier transforms,

F̂ (x) = Ĥ(x) +
Ĝ(x− uN

2 )− Ĝ(x+ uN
2 )

2i
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Decomposition lemma - idea of the proof II

F̂ (x) = Ĥ(x) +
Ĝ(x− uN

2 )− Ĝ(x+ uN
2 )

2i

Ω3 Ω4 u4

Ω3 − u4
2

Ω4 u4

Ω3 + u4
2

Ĝ can be chosen in a way that

F̂ (x) =
Ĝ(x− uN

2 )− Ĝ(x+ uN
2 )

2i
, x ∈ ΩN\ΩC

N .
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Construction of the Riesz basis

Recall

Finding a Riesz basis for ΩN is equivalent to finding a set of uniqueness
and interpolation for PW (ΩN ).

Assume there exists a Riesz basis E(ΛN−1) for ΩN−1.

F (x) = H(x) + sin(π〈x, uN 〉)G(x),

F ∈ PW (ΩN ), H ∈ PW (ΩC
N ), and G ∈ PW (ΩN−1).

Let E(∆N ) be an
orthonormal basis for L2(ΩC

N ). Is

ΛN−1 ∪∆N

a set of uniqueness and interpolation for PW (ΩN )? Not necessarily!
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Construction of the Riesz basis - set of uniqueness

We check if ΛN−1 ∪∆N is a set of uniqueness for PW (ΩN ). Denote by
ZN the set of zeros of sin(π〈x, uN 〉), and assume F (λ) = 0 for all
λ ∈ ΛN−1 ∪∆N .

It is easy to check that ∆N ⊂ ZN . If δ ∈ ∆N ,

F (δ) = H(δ) + sin(π〈δ, uN 〉)G(δ) = H(δ) = 0.

This implies H ≡ 0 (since H ∈ PW (ΩC
N )), so

F (x) = sin(π〈x, uN 〉)G(x).

What if there exists λ ∈ ΛN−1 such that λ ∈ ZN?

F (λ) = sin(π〈λ, uN 〉)G(λ) = 0 6⇒ G(λ) = 0.

A. Debernardi Pinos – BIU 25 / 34



Construction of the Riesz basis - set of uniqueness

We check if ΛN−1 ∪∆N is a set of uniqueness for PW (ΩN ). Denote by
ZN the set of zeros of sin(π〈x, uN 〉), and assume F (λ) = 0 for all
λ ∈ ΛN−1 ∪∆N .

It is easy to check that ∆N ⊂ ZN . If δ ∈ ∆N ,

F (δ) = H(δ) + sin(π〈δ, uN 〉)G(δ) = H(δ) = 0.

This implies H ≡ 0 (since H ∈ PW (ΩC
N )), so

F (x) = sin(π〈x, uN 〉)G(x).

What if there exists λ ∈ ΛN−1 such that λ ∈ ZN?

F (λ) = sin(π〈λ, uN 〉)G(λ) = 0 6⇒ G(λ) = 0.

A. Debernardi Pinos – BIU 25 / 34



Construction of the Riesz basis - set of uniqueness

We check if ΛN−1 ∪∆N is a set of uniqueness for PW (ΩN ). Denote by
ZN the set of zeros of sin(π〈x, uN 〉), and assume F (λ) = 0 for all
λ ∈ ΛN−1 ∪∆N .

It is easy to check that ∆N ⊂ ZN . If δ ∈ ∆N ,

F (δ) = H(δ) + sin(π〈δ, uN 〉)G(δ) = H(δ) = 0.

This implies H ≡ 0 (since H ∈ PW (ΩC
N )), so

F (x) = sin(π〈x, uN 〉)G(x).

What if there exists λ ∈ ΛN−1 such that λ ∈ ZN?

F (λ) = sin(π〈λ, uN 〉)G(λ) = 0 6⇒ G(λ) = 0.

A. Debernardi Pinos – BIU 25 / 34
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F (δ) = H(δ) + sin(π〈δ, uN 〉)G(δ) = H(δ) = 0.

This implies H ≡ 0 (since H ∈ PW (ΩC
N )), so

F (x) = sin(π〈x, uN 〉)G(x).

What if there exists λ ∈ ΛN−1 such that λ ∈ ZN?

F (λ) = sin(π〈λ, uN 〉)G(λ) = 0 6⇒ G(λ) = 0.

Remark

The sets ZN and ΛN−1 must not have common points!
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Construction of the Riesz basis - set of uniqueness

Corollary

If ∆N is a set of uniqueness for PW (ΩC
N ) and ΛN−1 is a set of

uniqueness for PW (ΩN−1) such that

{x ∈ R2 : sin(π〈x, uN 〉) = 0} ∩ ΛN−1 = ∅,

then ∆N ∪ ΛN−1 is a set of uniqueness for PW (ΩN ).

Ω4

u1
u2

u3

u4
ΩC

4 u4

u1 + u2 + u3

Ω3

u1 u2

u3
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Construction of the Riesz basis - set of interpolation

Remark

In the case of sets of interpolation, the situation is worse. We need the
sets ZN and ΛN−1 to be separated, i.e.,

inf
λ∈ΛN−1

| sin(π〈λ, uN 〉)| > 0.
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Remark

In the case of sets of interpolation, the situation is worse. We need the
sets ZN and ΛN−1 to be separated, i.e.,

inf
λ∈ΛN−1

| sin(π〈λ, uN 〉)| > 0.

The stability theorem comes into play:

Theorem (Paley-Wiener stability theorem)

Let Ω be a bounded set and let Λ = {λn} be a sequence of points such
that E(Λ) is a Riesz basis for L2(Ω). Then there exists a constant
η = η(Ω,Λ) > 0 such that if a sequence Λ′ = {λ′n} satisfies

|λn − λ′n| ≤ η

for all n, then E(Λ′) is also a Riesz basis for L2(Ω).
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Construction of the Riesz basis - set of interpolation

Remark

In the case of sets of interpolation, the situation is worse. We need the
sets ZN and ΛN−1 to be separated, i.e.,

inf
λ∈ΛN−1

| sin(π〈λ, uN 〉)| > 0.

Goal: To slightly perturb the set ΛN−1 to obtain a set Λ′N−1, so that

it is still a set of uniqueness and interpolation for PW (ΩN−1);

Λ′N−1 and ZN are separated.
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Perturbation method

Let η > 0 be the constant from the Paley-Wiener perturbation
theorem. For any λ ∈ ΛN−1,

λ

ZN

B(λ, η)

Define Λ′N−1 = {λ′n}. Then

inf
λ′∈Λ′N−1

| sin(π〈λ′, uN 〉)| ≥ c(η,ΛN−1, uN ) > 0.
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Construction of the Riesz basis - set of interpolation

Recall

A set Λ ⊂ Rd is a set of interpolation for PW (Ω) if for any
{cλ} ∈ `2(Λ) there exists at least one F ∈ PW (Ω) such that F (λ) = cλ
for all λ ∈ Λ.

Let ∆N and ΛN−1 be sets of interpolation for PW (ΩC
N ) and

PW (ΩN−1), respectively.

Perturb ΛN−1 to obtain Λ′N−1 so that

inf
λ′∈Λ′N−1

| sin(π〈λ′, uN 〉)| ≥ c > 0,

preserving interpolation properties for PW (ΩN−1).

Claim: ΛN := ∆N ∪ Λ′N−1 is a set of interpolation for PW (ΩN ).
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Construction of the Riesz basis - set of interpolation

Claim: ΛN := ∆N ∪ Λ′N−1 is a set of interpolation for PW (ΩN ).

F (x) = H(x) + sin(π〈x, uN 〉)G(x), H ∈ PW (ΩC
N ), G ∈ PW (ΩN−1).

Let {cλ} ∈ `2(ΛN ) = `2(∆N ∪ Λ′N−1).

Let H ∈ PW (ΩC
N ) be such that H(δ) = cδ = F (δ) for all δ ∈ ∆N .

Since infλ∈Λ′N−1
| sin(π〈λ, uN 〉)| ≥ c,{

cλ −H(λ)

sin(〈λ, uN 〉)

}
∈ `2(Λ′N−1).

Let G ∈ PW (ΩN−1) be such that

G(λ) =
cλ −H(λ)

sin(〈λ, uN 〉)
, λ ∈ Λ′N−1.

We are done!
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Lemma

If Ω ⊂ Rd is bounded and of positive measure, for any uniformly
discrete set Λ ⊂ Rd there is a constant C = C(Λ,Ω) such that∑

λ∈Λ

|H(λ)|2 ≤ C‖H‖2L2(Rd)

Let G ∈ PW (ΩN−1) be such that

G(λ) =
cλ −H(λ)

sin(〈λ, uN 〉)
, λ ∈ Λ′N−1.
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Arbitrary dimensions

A zonotope on Rd is the Minkowski sum of line segments:

ΩN =

{ N∑
k=1

tkuk : −1

2
≤ tk ≤

1

2
, k = 1, . . . , N

}
, uk ∈ Rd.

Similar decomposition lemma.

Induction on N and d.

Similar perturbation method.
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Remarks

The structure of the set Λ can be very irregular.

Although it may not be easy, Λ can be written down explicitly.

Poor control of “Riesz” constants

A‖f‖2 ≤
∑
|cn|2 ≤ B‖f‖2.
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Open problems

Find a Riesz basis of exponentials for the circle/triangle...

...or prove they do not admit one.

Does there exist a (nontrivial) set that does not admit a Riesz
basis of exponentials?
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Thank you for your attention!
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