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Introduction

Given a bounded measurable set Q C R? of positive measure, when is it
possible to find a countable set of frequencies A C R? so that the
system

E(A) == {exher,  ealx) = M@V

is a basis for L2(Q)?
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Introduction

Given a bounded measurable set Q C R? of positive measure, when is it
possible to find a countable set of frequencies A C R? so that the

system .
E(A) == {exher,  ealx) = M@V

is a basis for L2(Q)?

The answer depends on what we mean by a basis!
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Orthonormal basis

In a Hilbert space H, orthonormal basis (ONB) are the best type of
basis one can expect.

Great properties: if a system of vectors {f,,} is an ONB for H, then for
any f € H

F=Y (Fdadb I =1E fdllee.

Perfect reconstruction of f via its coefficients (f, fy,)-

If E(A) is an orthonormal basis for L?(£2), we say that A is a
spectrum for 2, and € is called a spectral set.

Classical example: Fourier basis F(Z?) of L?(]0,1]%).
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Orthonormal basis of exponentials

Given an arbitrary set €2, does there exist an ONB of exponential
functions for L?(2)? (Does 2 admit a spectrum A?)
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Orthonormal basis of exponentials

Given an arbitrary set €2, does there exist an ONB of exponential
functions for L?(2)? (Does 2 admit a spectrum A?)

Answer: It depends on the geometry of ). More precisely, the answer
is intimately related to the concept of tiling by translations.
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Tiling by translations

Definition

We say that a measurable set Q C R? tiles R? by translations if there
exists a (discrete) set T C R? if

U@+t =r?,

teT

and [(Q+t) N (Q+ )| =0 for every t,t' € T such that ¢t # ¢'.
Equivalently,

ng(m —t)=1 ae. zeR%L
teT
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Tiling by translations

Definition

We say that a measurable set Q C R? tiles R? by translations if there
exists a (discrete) set T C R? if

U@+t =r?,

teT

and [(Q+t) N (Q+ )| =0 for every t,t' € T such that ¢t # ¢'.
Equivalently,

ng(m —t)=1 ae. zeR%L
teT
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Tiling sets: examples

Sets that tile R? by translations:

o Parallelogram

[ ]
[ ]
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Tiling sets: examples

Sets that tile R? by translations:

o Parallelogram o Hexagon
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Tiling sets: examples

Sets that tile R? by translations:

o Parallelogram o Hexagon

T

N gsnggg

Sets that do not tile R? by translations:

o Triangle
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Tiling sets: examples

Sets that tile R? by translations:

o Parallelogram o Hexagon
XL > P T\ T
P
[l testedetets
SeSeSalese
£5easeSese!

Sets that do not tile R? by translations:

o Triangle e Circle

O
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Tilings and spectral sets: Fuglede conjecture

In 1974, B. Fuglede conjectured the following:

Q c R? admits a spectrum if and only if it tiles R? by translations. \

He obtained partial results towards the conjecture:

e when A is a lattice, i.e., A = AZ? for some invertible d x d matrix

A. In this case, T = (AT)71Z¢ is the dual lattice of A, also
denoted A*;

e when 7T is a lattice (and in this case A = T* is a spectrum for Q).
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Tiling convex sets

One of the directions of the Fuglede conjecture (tiling = spectral) has
been known to be true since long ago for convex sets (2

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Q C R? tiles R? by translations, then Q is a centrally
symmetric polytope and moreover it tiles R% by lattice translations.
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Tiling convex sets

One of the directions of the Fuglede conjecture (tiling = spectral) has
been known to be true since long ago for convex sets (2

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Q C R? tiles R? by translations, then Q is a centrally
symmetric polytope and moreover it tiles R% by lattice translations.

By Fuglede’s partial results, the “tiling = spectral” part of his
conjecture follows from this theorem.
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Tiling convex sets

One of the directions of the Fuglede conjecture (tiling = spectral) has
been known to be true since long ago for convex sets (2

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Q C R? tiles R? by translations, then Q is a centrally
symmetric polytope and moreover it tiles R% by lattice translations.

By Fuglede’s partial results, the “tiling = spectral” part of his
conjecture follows from this theorem.

The statement of Venkov’s theorem is much stronger! I
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The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

e 2001, I. Laba: true when 2 is a union of two intervals on R;

A. Debernardi Pinos — BIU



The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

e 2001, I. Laba: true when 2 is a union of two intervals on R;

@ 2003, A. Iosevich, N. Katz, and T. Tao: true when Q C R? is
convex ({2 is a parallelogram or a hexagon);
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The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

e 2001, I. Laba: true when 2 is a union of two intervals on R;

@ 2003, A. Iosevich, N. Katz, and T. Tao: true when Q C R? is
convex ({2 is a parallelogram or a hexagon);

@ 2004, T. Tao: false for d > 5. More precisely, he found spectral
sets Q C R that do not tile R? by translations (spectral # tiling);
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The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

e 2001, I. Laba: true when 2 is a union of two intervals on R;

@ 2003, A. Iosevich, N. Katz, and T. Tao: true when Q C R? is
convex ({2 is a parallelogram or a hexagon);

@ 2004, T. Tao: false for d > 5. More precisely, he found spectral
sets Q C R that do not tile R? by translations (spectral # tiling);

e 2005, M. Matolcsi: false for d = 4 (spectral % tiling);
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The Fuglede conjecture after 2000

Significant steps were made in relation with Fuglede’s conjecture in the
2000s.

e 2001, I. Laba: true when 2 is a union of two intervals on R;

@ 2003, A. Iosevich, N. Katz, and T. Tao: true when Q C R? is
convex ({2 is a parallelogram or a hexagon);

@ 2004, T. Tao: false for d > 5. More precisely, he found spectral
sets Q C R that do not tile R? by translations (spectral # tiling);

e 2005, M. Matolcsi: false for d = 4 (spectral % tiling);

e 2006, M. Kolountzakis and M. Matolcsi: for d > 5, tiling #
spectral;

@ 2006, M. Kolountzakis and M. Matolcsi: false for d = 3 (spectral
# tiling);
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The Fuglede conjecture after 2000

e 2006, B. Farkas and S. Révesz: for d = 4, tiling # spectral,

e 2006, B. Farkas, M. Matolcsi, and P. Méra: for d = 3, tiling %
spectral;
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The Fuglede conjecture after 2000

e 2006, B. Farkas and S. Révesz: for d = 4, tiling # spectral,
e 2006, B. Farkas, M. Matolcsi, and P. Méra: for d = 3, tiling %

spectral;

2017, R. Greenfeld and N. Lev: true when © C R? is convex;

2019, M. Matolcsi and N. Lev: true for all dimensions d > 1 when
Q c R? is convex.
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The Fuglede conjecture after 2000

2006, B. Farkas and S. Révesz: for d = 4, tiling # spectral;

2006, B. Farkas, M. Matolcsi, and P. Mora: for d = 3, tiling %
spectral;

2017, R. Greenfeld and N. Lev: true when Q C R3 is convex;

2019, M. Matolcsi and N. Lev: true for all dimensions d > 1 when
Q c RY is convex.

Is Fuglede conjecture true for general sets €2 in d = 1,27 l
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The Fuglede conjecture after 2000

2006, B. Farkas and S. Révesz: for d = 4, tiling # spectral;

2006, B. Farkas, M. Matolcsi, and P. Mora: for d = 3, tiling %
spectral;

2017, R. Greenfeld and N. Lev: true when Q C R3 is convex;

2019, M. Matolcsi and N. Lev: true for all dimensions d > 1 when
Q c RY is convex.

Is Fuglede conjecture true for general sets €2 in d = 1,27 l

e Many partial results...
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Looking for alternatives to exponential ONBs

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Q C R? tiles RY by translations, then  is a centrally
symmetric polytope and moreover it tiles R% by lattice translations.

In this case the structure of €2 is very specific (in d =2, Q is a
parallelogram or a hexagon). This makes the class of convex sets
Q C RY that admit a spectrum be rather small.
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Looking for alternatives to exponential ONBs

Theorem (Venkov, 1954; McMullen, 1980)

If a convex body Q C R? tiles RY by translations, then  is a centrally
symmetric polytope and moreover it tiles R% by lattice translations.

In this case the structure of €2 is very specific (in d =2, Q is a
parallelogram or a hexagon). This makes the class of convex sets
Q C RY that admit a spectrum be rather small.

Can we find weaker structures than exponential ONBs that will provide
a useful decomposition of L?(Q) for a larger class of convex sets 27
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In a Hilbert space H, we say that a system of vectors {f,} C H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.
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Riesz bases

In a Hilbert space H, we say that a system of vectors {f,} C H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.

Equivalent definition

A system of vectors {f,} C H is a Riesz basis for H if and only if every
f € H admits a representation

f= chfn

and such that the coefficients {¢,} satisfy the relation

AIFIP <D el < BIIFI?,

where 0 < A < B do not depend on f.
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Riesz bases

In a Hilbert space H, we say that a system of vectors {f,} C H is a
Riesz basis for H if it is the image of an orthonormal basis under a
bounded linear invertible map.

Equivalent definition

A system of vectors {f,} C H is a Riesz basis for H if and only if it
satisfies the following three conditions:

1. {fn} is complete in H (i.e., if (f, f,) = 0 for all n, then f = 0);
2. for every f € H we have > |(f, fn)|? < o0;

3. for any sequence {c,} € ¢* there exists f € H such that
(f, fn) = cp for all n.
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Riesz bases of exponentials - a simple example

Example (Kadec’s 1/4-Theorem)
If A:={\,} CRissuch that

1
|)\n—n|§L<Z for all n € Z,

then E(A) = {e?™*}, 7 is a Riesz basis for L2(0,1). The constant
1/4 is sharp.
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Riesz basis of exponentials: known results

e 1953, A. Kohlenberg: existence whenever 2 C R is the union of
two intervals of equal length;

e 1995, K. Seip: existence whenever 2 C R is the union of two
arbitrary intervals (subcases with more intervals).
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Riesz basis of exponentials: known results

e 1953, A. Kohlenberg: existence whenever 2 C R is the union of
two intervals of equal length;

e 1995, K. Seip: existence whenever 2 C R is the union of two
arbitrary intervals (subcases with more intervals).

e 1997, Y. Lyubarskii and K. Seip: existence when ) is the union of
finitely many intervals of equal length.
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Riesz basis of exponentials: known results

e 1953, A. Kohlenberg: existence whenever 2 C R is the union of
two intervals of equal length;

e 1995, K. Seip: existence whenever 2 C R is the union of two
arbitrary intervals (subcases with more intervals).

e 1997, Y. Lyubarskii and K. Seip: existence when ) is the union of
finitely many intervals of equal length.

@ 2000, Y. Lyubarskii and L. Rashkovskii: existence if Q C R? is a
centrally symmetric polygon whose vertices lie on Z2.
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Riesz basis of exponentials: known results

@ 2006, J. Marzo: existence when Q C R? is the union of finitely
many unit cubes.
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Riesz basis of exponentials: known results

@ 2006, J. Marzo: existence when Q C R? is the union of finitely
many unit cubes.

@ 2012, L. de Carli and A. Kumar: existence when Q C R? is a
“trapezoid”.
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Riesz basis of exponentials: known results

@ 2006, J. Marzo: existence when Q C R? is the union of finitely
many unit cubes.

@ 2012, L. de Carli and A. Kumar: existence when Q C R? is a
“trapezoid”.

@ 2014, S. Grepstad and N. Lev: existence if Q C R? is a centrally
symmetric polytope with centrally symmetric facets, with all
vertices lying on Z¢.

ng(x—t):meN a.e. x € R?
teT
(multi-tiling by lattice translations).
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Riesz basis of exponentials: known results

@ 2006, J. Marzo: existence when Q C R? is the union of finitely
many unit cubes.

@ 2012, L. de Carli and A. Kumar: existence when Q C R? is a
“trapezoid”.

@ 2014, S. Grepstad and N. Lev: existence if Q C R? is a centrally
symmetric polytope with centrally symmetric facets, with all
vertices lying on Z¢.

ng(x—t):meN a.e. x € R?
teT

(multi-tiling by lattice translations).

e 2015, G. Kozma and S. Nitzan: existence if ) a union of intervals
on R.

e 2016, G. Kozma and S. Nitzan: existence if 2 a union of rectangles
on R<.
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Riesz basis of exponentials: known results

@ 2006, J. Marzo: existence when Q C R? is the union of finitely
many unit cubes.

@ 2012, L. de Carli and A. Kumar: existence when Q C R? is a
“trapezoid”.

@ 2014, S. Grepstad and N. Lev: existence if Q C R? is a centrally
symmetric polytope with centrally symmetric facets, with all
vertices lying on Z¢.

ng(x—t):meN a.e. x € R?
teT
(multi-tiling by lattice translations).
e 2015, G. Kozma and S. Nitzan: existence if ) a union of intervals
on R.
e 2016, G. Kozma and S. Nitzan: existence if 2 a union of rectangles
on R<.
e 2017, D. Walnut: same conclusion as Y. Lyubarskii and A.
Rashkovskii, different approach.
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Main result

Theorem (D., Lev)

Let Q be a centrally symmetric polytope on R, whose faces of all

dimensions are centrally symmetric. Then L*(Q) admits a Riesz basis
of exponentials E(A).
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Main result

Theorem (D., Lev)

Let Q be a centrally symmetric polytope on R, whose faces of all
dimensions are centrally symmetric. Then L*(Q) admits a Riesz basis
of exponentials E(A).

The proof is based on a recent approach due to D. Walnut (d = 2). We
also need the Paley-Wiener stability theorem:

Theorem

Let Q2 be a bounded set and let A = {\,} be a sequence of points such
that E(A) is a Riesz basis for L?>(Q). Then there exists a constant
n=n(Q,A) >0 such that if a sequence A" = {\.,} satisfies

|>‘n_)‘;z| <n

for all n, then E(A') is also a Riesz basis for L*(Q).
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Paley-Wiener spaces of functions

For a bounded measurable set Q C R? of positive measure, the
Paley-Wiener space PW (Q) is the set of all F € L?*(R?) satisfying

/ f —2m (z,t) dt, f e L2(Q),

i.e., the space of Fourier transforms of f € L?(€2).
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Paley-Wiener spaces of functions

For a bounded measurable set  C R¢ of positive measure, the
Paley-Wiener space PW (Q) is the set of all F € L?*(R?) satisfying

/ f —27rz (z,t) dt, f e L?(Q)7

i.e., the space of Fourier transforms of f € L?(€2).

Definition

A set A C R? is called a set of uniqueness for PW () if whenever
F € PW(Q) satisfies F(\) =0 for every A € A, then F' = 0. In other
words, F' is uniquely determined by its values in A.

Definition

A set A C R? is called a set of interpolation for PW (Q) if for any
{ea} € £2(A) there exists at least one F' € PW(Q) such that F(\) = ¢y,
for all A € A.

| N\
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Characterization of Riesz bases of exponentials

The following is well known:

E(A) is a Riesz basis for L?(€2) if and only if A is a set of uniqueness
and interpolation for PW (£2).

The proof of our main result consists in constructing sets A of
interpolation and uniqueness for PW (£2).
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Characterization of Riesz bases of exponentials

The following is well known:

E(A) is a Riesz basis for L?(€2) if and only if A is a set of uniqueness
and interpolation for PW (£2).

The proof of our main result consists in constructing sets A of
interpolation and uniqueness for PW (£2).

If A is a set of interpolation for PW (), then A is uniformly discrete.

We say that A C R? is a uniformly discrete set if

inf (A—=X|>c>0.
ANEA
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Proof of the main result (2 dimensions)

Any centrally symmetric polygon Qy C R? with 2N sides is a
Minkowski sum of N vectors uq,...,uy:

N
1 1
QN:Q(ul,...,uN):{;tkuk:—igtkgi,kzl,...,]\f},

Ug

uz

U1l
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Denote Qn_1 = Q(u1,...,un—_1), and Q% the central parallelogram of
Qn (given by uy). Formally,

| =

N-1 1
5 —{ﬁ;uk‘l‘tﬂlN —§<t1,t2 }

C
Q4 0§ g Qs
L L us
/// - /U/1+U/2+us /// //
U9 [’ Ul w
2
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Decomposition lemma

For any F € PW(Qy) there exist functions G € PW (Qn_1) and
H € PW(QY) such that

F(x) = H(x) + sin(7{z,un))G(x)
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Decomposition lemma - idea of the proof

For any F € PW(Qy) there exist functions G € PW (Qn_1) and
H € PW(QY) such that

F(x) = H(x) + sin(w{z,un))G(x)

First we write

e27ri<:c, UTN> _ e 2mi (z, UTN)

24

sin(m(z,un)) =

Taking Fourier transforms,

F(z) = H(z) +
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Decomposition lemma - idea of the proof II

G can be chosen in a way that

~ Gz — ") — Gz +
F(zr) = ( 2)% ( 2), z € Qn\Q%.
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Construction of the Riesz basis

Finding a Riesz basis for Q0 is equivalent to finding a set of uniqueness
and interpolation for PW (Qy).

Assume there exists a Riesz basis E(Ay_1) for Qn_1.
F(x) = H(x) + sin(m(z,un))G(x),

F e PW(Qy), He PW(QS), and G € PW(Qn_1).
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Construction of the Riesz basis

Finding a Riesz basis for Q0 is equivalent to finding a set of uniqueness
and interpolation for PW (Qy).

Assume there exists a Riesz basis E(Ay_1) for Qn_1.
F(x) = H(x) + sin(m(z,un))G(x),

F e PW(Qy), He PW(QS), and G € PW(Qn_1). Let E(Ax) be an

orthonormal basis for L2(Q%). Is

AN_1UAN

a set of uniqueness and interpolation for PW (Qn)?
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Construction of the Riesz basis

Finding a Riesz basis for Q0 is equivalent to finding a set of uniqueness
and interpolation for PW (Qy).

Assume there exists a Riesz basis E(Ay_1) for Qn_1.
F(x) = H(x) + sin(m(z,un))G(x),

F e PW(Qy), He PW(QS), and G € PW(Qn_1). Let E(Ax) be an

orthonormal basis for L2(Q%). Is

AN_1UAN

a set of uniqueness and interpolation for PW (£2y)? Not necessarily!
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Construction of the Riesz basis - set of uniqueness

We check if Ay_1 UAp is a set of uniqueness for PW (Qy). Denote by

Zn the set of zeros of sin(m(x,uy)), and assume F(A) = 0 for all
ANEAN_1UAN.
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Construction of the Riesz basis - set of uniqueness

We check if Ay_1 UAp is a set of uniqueness for PW (Qy). Denote by

Zn the set of zeros of sin(m(x,uy)), and assume F(A) = 0 for all
ANEAN_1UAN.

o It is easy to check that Ay C Zn. If 6 € Ay,
F(5) = H(0) + sin(n(d,un))G(6) = H(9) = 0.

This implies H = 0 (since H € PW(QS)), so
F(z) = sin(m(z,un))G(z).
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Construction of the Riesz basis - set of uniqueness

We check if Ay_1 UAp is a set of uniqueness for PW (Qy). Denote by

Zn the set of zeros of sin(m(x,uy)), and assume F(A) = 0 for all
ANEAN_1UAN.

o It is easy to check that Ay C Zn. If 6 € Ay,
F(5) = H(0) + sin(n(d,un))G(6) = H(9) = 0.

This implies H = 0 (since H € PW(QS)), so
F(z) = sin(m(z,un))G(z).

o What if there exists A € Ay_1 such that A € Zn?

F(A) =sin(m(\,un))G(A) =0 # G(\) = 0.
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Construction of the Riesz basis - set of uniqueness

We check if Ay_1 UAp is a set of uniqueness for PW ({2y). Denote by
Zn the set of zeros of sin(m(z,uy)), and assume F () = 0 for all
A€EAnN_1UAN.

o It is easy to check that Ay C Zy. If 6 € Ay,

F(6) = H(0) + sin(n (8, un))G(6) = H(J) = 0.

This implies H = 0 (since H € PW(Q5)), so
F(z) = sin(m(z,un))G(z).

o What if there exists A € Ay_1 such that A € Zn?

F(X\) =sin(m(A\, un))G(A) = 0% G(A) = 0.

The sets Zy and Ayx_1 must not have common points! I
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Construction of the Riesz basis - set of uniqueness

Corolla

If Ay is a set of uniqueness for PW(QX) and Ax_1 is a set of
uniqueness for PW (Qn_1) such that

{z e R? : sin(n{x,uyn)) =0} NAy_1 =0,

then Axy UAN_1 is a set of uniqueness for PW (Qn).

U + ug + usg
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Construction of the Riesz basis - set of interpolation

In the case of sets of interpolation, the situation is worse. We need the
sets Zn and Ay_1 to be separated, i.e.,

inf | sin(m(\, > 0.
it [sin(m\, ux))
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Construction of the Riesz basis - set of interpolation

In the case of sets of interpolation, the situation is worse. We need the
sets Zy and Ay_1 to be separated, i.e.,

inf i A > 0.
\Jof - Jsin(r(\, ux))|

The stability theorem comes into play:

Theorem (Paley-Wiener stability theorem)

Let Q be a bounded set and let A = {\,} be a sequence of points such
that E(A) is a Riesz basis for L?(Q)). Then there exists a constant
n=n(Q,A) >0 such that if a sequence N' = {\,} satisfies

|)‘n_>‘;z| S77

for all n, then E(A') is also a Riesz basis for L*(9).
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Construction of the Riesz basis - set of interpolation

In the case of sets of interpolation, the situation is worse. We need the
sets Zn and Ay_1 to be separated, i.e.,

inf |sin(r(), > 0.
il sin(r(h ux))

Goal: To slightly perturb the set Ay_1 to obtain a set A’y_,, so that

e it is still a set of uniqueness and interpolation for PW (Qxn_1);

o Ay_, and Zy are separated.
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Perturbation method

Let n > 0 be the constant from the Paley-Wiener perturbation
theorem. For any A € Ay_1,

ZN
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Perturbation method

Let n > 0 be the constant from the Paley-Wiener perturbation
theorem. For any A € Ay_1,

ZN

B(A,n)

Define A’y _; = {A,}. Then

inf |sin(m(N,un))| > c(n, An—1,un) > 0.
NeAy
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Construction of the Riesz basis - set of interpolation

A set A C R? is a set of interpolation for PW () if for any

{ea} € £2(A) there exists at least one F' € PW(Q) such that F(\) = cy
for all A € A.
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Construction of the Riesz basis - set of interpolation

A set A C R? is a set of interpolation for PW () if for any

{ea} € £2(A) there exists at least one F' € PW(Q) such that F(\) = cy
for all A € A.

Let Ay and Ax_; be sets of interpolation for PW (QS) and
PW (Qn_1), respectively.

o Perturb Ax_; to obtain A’y_; so that

inf |sin(7(\,u >c>0
)\’EA},_1| ( < s N>)|— )

preserving interpolation properties for PW (Qpn_1).

A. Debernardi Pinos — BIU




Construction of the Riesz basis - set of interpolation

A set A C R? is a set of interpolation for PW () if for any

{ea} € £2(A) there exists at least one F' € PW(Q) such that F(\) = cy
for all A € A.

Let Ay and Ax_; be sets of interpolation for PW (QS) and
PW (Qn_1), respectively.

o Perturb Ax_; to obtain A’y_; so that

inf |sin(7(\,u >c>0
)\’EA},_1| ( < s N>)|— )

preserving interpolation properties for PW (Qpn_1).

o Claim: Ay := Ay UA/_; is a set of interpolation for PW (Qy).
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
F(x) = H(x) + sin(n{x,un))G(x), H € PW(Q%), G € PW(Qn-1).

Let {C)\} € KQ(AN) = KQ(AN U AlN—l)'
o Let H € PW(Q5) be such that H(§) = cs = F(J) for all § € Ay.
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
F(x) = H(x) + sin(n{x,un))G(x), H € PW(Q%), G € PW(Qn-1).

Let {C)\} € KQ(AN) = KQ(AN U AlN—l)'
o Let H € PW(Q5) be such that H(§) = cs = F(J) for all § € Ay.
o Since infyepr  [sin(m(A,un))| > ¢,

CA—H()‘) 2/ A1
{smw,um)} € Clhv-):
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
F(z) = H(x) + sin(r(z,uy))G(z), He PW(QS), G e PW(Qn_1).
Let {C)\} € £2(AN) = KQ(AN U AlN—l)‘

o Let H € PW(QS) be such that H(J) = cs = F(J) for all § € Ay.
o Since infyepr  [sin(m(A, un))| = ¢,

C)\ — H()\) 2
{sin<<A,uN>>} € Ehy-):

If Q C R is bounded and of positive measure, for any uniformly
discrete set A C R? there is a constant C = C(A, Q) such that

ST IHWP < CH|a g
AEA
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
F(x) = H(x) + sin(n{x,un))G(x), H € PW(Q%), G € PW(Qn-1).

Let {C)\} € KQ(AN) = KQ(AN U AlN—l)'
o Let H € PW(Q5) be such that H(§) = cs = F(J) for all § € Ay.
o Since infyepr  [sin(m(A,un))| > ¢,

CA—H()‘) 2/ A1
{smw,um)} € Clhv-):

o Let G € PW(Qx_1) be such that

G(/\) - C)\—H()\)

- TN e A .
sin((, un))’ € A
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Construction of the Riesz basis - set of interpolation

Claim: Ay := Ay UAy_, is a set of interpolation for PW (Qy).
F(x) = H(x) + sin(n{x,un))G(x), H € PW(Q%), G € PW(Qn-1).

Let {C)\} € KQ(AN) = KQ(AN U AlN—l)'
o Let H € PW(Q5) be such that H(§) = cs = F(J) for all § € Ay.
o Since infyepr  [sin(m(A,un))| > ¢,

CA—H()‘) 2/ A1
{smw,um)} € Clhv-):

o Let G € PW(Qx_1) be such that

G(/\) - C)\—H()\)

- TN e A .
sin((, un))’ € A

o We are done!
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Arbitrary dimensions

A zonotope on R? is the Minkowski sum of line segments:

N
1 1 d
QNZ{;tkuk.—iﬁtk§§,k=1,---,N}a up € R%.
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Arbitrary dimensions

A zonotope on R? is the Minkowski sum of line segments:

Qn = {Ztkuk

~
IN
Do =

,kzl,...,N}, u € RY.

t\.’Jlr—t

e Similar decomposition lemma.
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Arbitrary dimensions

A zonotope on R? is the Minkowski sum of line segments:

Qn = {Ztkuk

t\.’Jlr—t
e;.
IN

,kzl,...,N}, u € RY.

Do =

e Similar decomposition lemma.

e Induction on N and d.
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Arbitrary dimensions

A zonotope on R? is the Minkowski sum of line segments:

Qn = {Ztkuk

e;.
IN
Do =

,k:l,...,N}, up € RY

t\.’Jlr—t

e Similar decomposition lemma.
@ Induction on N and d.

o Similar perturbation method.
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Remarks

o The structure of the set A can be very irregular.
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Remarks

o The structure of the set A can be very irregular.

o Although it may not be easy, A can be written down explicitly.
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Remarks

o The structure of the set A can be very irregular.
o Although it may not be easy, A can be written down explicitly.

@ Poor control of “Riesz” constants

AP <D leal® < BIFIIP.
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Open problems

e Find a Riesz basis of exponentials for the circle/triangle...
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Open problems

e Find a Riesz basis of exponentials for the circle/triangle...

@ ...or prove they do not admit one.
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Open problems

e Find a Riesz basis of exponentials for the circle/triangle...
@ ...or prove they do not admit one.

@ Does there exist a (nontrivial) set that does not admit a Riesz
basis of exponentials?
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Thank you for your attention!
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