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Abstract
Although the basic idea behind the concept of a greedy basis had been around for some time, the

ormal development of a theory of greedy bases was initiated in 1999 with the publication of the article
S.V. Konyagin and V.N. Temlyakov, A remark on greedy approximation in Banach spaces, East J.
pprox. 5 (3) (1999), 365-379]. The theoretical simplicity of the thresholding greedy algorithm became
model for a procedure widely used in numerical applications and the subject of greedy bases evolved

ery rapidly from the point of view of approximation theory. The idea of studying greedy bases and
elated greedy algorithms attracted also the attention of researchers with a classical Banach space theory
ackground. From the more abstract point of functional analysis, the theory of greedy bases and its
erivates evolved very fast as many fundamental results were discovered and new ramifications branched
ut. Hundreds of papers on greedy-like bases and several monographs have been written since the
ppearance of the aforementioned foundational paper. After twenty-five years, the theory is very much
live and it continues to be a very active research topic both for functional analysts and for researchers
nterested in the applied nature of nonlinear approximation alike. This is why we believe it is a good

oment to gather a selection of 25 open problems (one per year since 1999!) whose solution would
ontribute to advance the state of art of this beautiful topic.
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echnologies.
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1. Introduction

Greedy algorithms provide sparse representations (or approximations) of a given im-
ge/signal in terms of a given system of elements of the ambient space. In a mathematical
etting, an image or signal is considered to be a function of a Banach space. For instance, a
wo-dimensional image can be viewed as a function of two variables belonging to the Hilbert
pace L2 or, more generally, to the Banach space L p, 1 ≤ p ≤ ∞. Usually we assume that

the system used for representation has some natural properties and we call it a dictionary. For
an element f from a Banach space X and a fixed m, we consider approximants which are
linear combinations of m terms from a dictionary D. We call such an approximant an m-term
approximant of f with respect to D.

In sparse approximation, a greedy algorithm is an algorithm that uses a greedy step in
searching for a new element to be added to a given m-term approximant. By a greedy step,
we mean one which maximizes a certain functional determined by information from the
previous steps of the algorithm. We obtain different types of greedy algorithms by varying the
above-mentioned functional and also by using different ways of constructing (i.e., choosing
coefficients of the linear combination) the m-term approximant from m previously selected
elements of the dictionary.

A classical problem of mathematical and numerical analysis that goes back to the origins
of Taylor’s and Fourier’s expansions, is to approximately represent a given function from
a space. The first step to solve the representation problem is to choose a representation
system. Traditionally, a representation system has some natural features such as minimality,
or orthogonality, that is, a simple structure which allows nice computational properties. The
most typical representation systems are the trigonometric system

x ↦→ eikx , k ∈ Z,

the algebraic system

x ↦→ xk, k ∈ Z, k ≥ 0,

the spline system, the wavelet system, and their multivariate versions. In general we may speak
of a basis X = (xk)∞k=1 (in a sense that we will specify below) in a Banach (or quasi-Banach)
space X.

The second step to solve the representation problem is to choose the form of the approximant
to be built from the chosen representation system X . In a classical way which was used for
centuries, given m ∈ N, an approximant am is a polynomial of order m with respect to X ,

am =

m∑
k=1

ck xk,

for some scalars ck , k = 1, . . . , m. In numerical analysis and approximation theory it was
understood that in many problems from signal/image processing it is more beneficial to use
an m-term approximant with respect to X than a polynomial of order m. This means that for
f ∈ X we look for an approximant of the form

am( f ) :=

∑
ck xk,
k∈Λ( f )

2
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where Λ( f ) is a set of m indices which is determined by f .
The third step to solve the representation problem is to choose a construction method of the

pproximant. In linear theory, partial sums of the corresponding expansion of f with respect
o the basis X is a standard method. It turns out that, in nonlinear theory, greedy approximants

are natural substitutes for the partial sums.
We emphasize that, although in the beginning this theory developed within the framework

f approximation theory, soon after the appearance of [46] the centre of activities in the
rea moved to functional analysis. Indeed, the introduction of new types of bases and the
chievement of their characterizations in terms of classical properties from Banach space theory
aught the attention of the specialists, who gave impetus to the theory and set the foundations
or a fruitful and novel research topic. As a result we now have different notations for the same
bjects, which come from approximation theory (see e.g. [58,60]) and functional analysis. In
eeping with current usage, in the next section we will present the notation and terminology
n the way it is nowadays used in the modern functional analysis approach to the subject, as
he reader can find in [19, Chapter 10] or [13]. After the preliminary Section 2, we present a
election of topics that reflect the state of art of the theory and suggest within each section the
roblems that we believe should be addressed in order to make meaningful advances.

. Notation and terminology

A minimal system in a Banach (or quasi-Banach) space X over the real or complex field
F will be a sequence X = (xn)∞n=1 in X for which there is a sequence X ∗

= (x∗
n)∞n=1 in X∗

uch that x∗
n(xn) = δn,k for all k and n in N. If X is complete, i.e., its closed linear span

[X ] = [xn : n ∈ N] is the entire space X, then X ∗ is unique, and we call it the dual minimal
system of X. In this case, we can associate the biorthogonal system (xn, x∗

n)∞n=1 to X . Also, we
an define for each finite subset A of N the coordinate projection on A relative to X as

SA :X → X, f ↦→

∑
n∈A

x∗

n( f ) xn.

finite subset A of N is said to be a greedy set of f ∈ X with respect to the complete minimal
ystem X if⏐⏐x∗

n( f )
⏐⏐ ≥

⏐⏐x∗

k ( f )
⏐⏐ , n ∈ A, k ∈ N \ A,

n which case SA( f ) is said to be a greedy projection. The map

F :X → FN, f ↦→ x∗

n( f )

ill be called the coefficient transform with respect to X . The support of a function (or signal)
f ∈ X with respect to X is the set

supp( f ) = {n ∈ N : x∗

n( f ) ̸= 0}.

A sequence X = (xn)∞n=1 in X is said to be a Schauder basis if for each f ∈ X there is
unique sequence α( f ) = (an)∞n=1 in F such that f =

∑
∞

n=1 an xn . If this series converges
nconditionality for all f ∈ X, X is said to be an unconditional basis of X. It is known that X
s an unconditional basis if and only if it is a complete minimal system for which the coordinate
rojections are uniformly bounded. If C ∈ [1, ∞) is such that

∥ ∥ | |
SA ≤ C, A ⊆ N, A < ∞,

3
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we say that X is C-unconditional. Furthermore, unconditional bases satisfy the estimate
∞∑

n=1

an xn

 ≤ C


∞∑

n=1

bn xn

 , |an| ≤ |bn| . (2.1)

If (2.1) holds for a given constant C , we say that the basis is C-lattice unconditional. A
equence X is a Schauder basis for X if and only if it is a complete minimal system for
hich the partial sum projections

S{n∈N : n≤m}, m ∈ N,

re uniformly bounded; besides, F( f ) = α( f ) for all f ∈ X.
Two sequences (xn)∞n=1 and ( yn)∞n=1 in X are said to be equivalent if there is an isomorphism

T : [X ] → [Y] such that T (xn) = yn for all n ∈ N. If max
{
∥T ∥ ,

T −1
} ≤ C for some

≥ 1 we say that X and Y are C-equivalent. A symmetric basis will be a Schauder basis
quivalent to all its permutations, and a subsymmetric basis will be an unconditional basis

= (xn)∞n=1 equivalent to (xϕ(n))∞n=1 for all increasing maps ϕ :N → N. If X = (xn)∞n=1 is a
symmetric (resp., subsymmetric) basis then there is a constant C such that for all one-to-one
(resp., increasing) maps ϕ :N → N we have

(S) X is C-equivalent to (xϕ(n))∞n=1.

Symmetric bases are unconditional, hence subsymmetric. If a sequence X is C-lattice uncon-
ditional and (S) holds whenever ϕ :N → N is a one-to-one (resp., increasing) map, then we
say that X is a C-symmetric (resp., C-subsymmetric) basis.

If the constant C appearing in the characterization of unconditionality, lattice uncondi-
tionality, symmetry, or subsymmetry is 1, we say that the corresponding property holds
isometrically. Since these properties are linear, that is, their definitions only involve the
boundedness of certain linear operators, any unconditional (resp., symmetric or subsymmetric)
basis becomes isometrically lattice unconditional (resp., symmetric or subsymmetric) under a
suitable renorming of the space (see [22] for the slightly more subtle case of subsymmetric
bases).

A symmetric sequence space will be a quasi-Banach space S ⊆ FN for which the unit
vector system is an isometrically symmetric basis of its closed linear span in S. In greedy
approximation, several nonlinear forms of symmetry naturally appear. We next introduce some
terminology in order to properly define them. Put

E = {λ ∈ F : |λ| = 1}, and D = {λ ∈ F : |λ| ≤ 1}.

Let X = (xn)∞n=1 be a sequence in a space X. Given A ⊆ N finite and ε = (εn)n∈A ∈ EA, we
set

1ε,A =

∑
n∈A

εn xn, 1A =

∑
n∈A

xn.

The sequence X is said to be C-symmetric for largest coefficients (SLC for short), 1 ≤ C < ∞,
if 1ε,A +

∑
n∈E

an xn

 ≤ C

1δ,B +

∑
n∈E

an xn

 (2.2)

for all pairwise disjoint finite subsets A, B, and E of N, all ε ∈ EA, all δ ∈ EB , and all (an)n∈E
in D.
4
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If (2.2) holds in the case when E = ∅, we say that the sequence X is C-superdemocratic.
f (2.2) holds under the additional restriction that ε and δ are constant, we say that X is C-
emocratic. In all cases, if the constant C is irrelevant we drop it from the notation, and if the
ondition holds with C = 1, we say that it holds isometrically. Isometric symmetry for largest

coefficients was originally named Property (A) in [21].
A sequence is superdemocratic if and only if it is democratic and there is a constant C such

that 1ε,A
 ≤ C

1ε,B
 , A ⊆ B ⊆ N, |B| < ∞, ε ∈ EB . (2.3)

equences that satisfy (2.3) are called unconditional for constant coefficients (UCC for short).
Superdemocracy can be characterized in terms of the upper democracy function, also known

s fundamental function and denoted ϕu, and the lower democracy function ϕ l of the sequence.
amely, if for m ∈ N we set

ϕu(m) = sup
|A|≤m
ε∈EA

1ε,A
 , ϕ l (m) = inf

|A|≥m
ε∈EA

1ε,A
 ,

then X is C-superdemocratic if and only if ϕu(m) ≤ Cϕ l (m) for all m ∈ N.
Let ϕ∗

u denote the fundamental function of the dual system X ∗ of the complete minimal
system X . If

ϕu(m)ϕ∗

l (m) ≤ Cm, m ∈ N, (2.4)

for some constant C , then both X and X ∗ are C-super-democratic. We call C-bidemocratic
hose complete minimal systems that satisfy (2.4) for a given constant C .

Finally, we say that a Banach space is squeezed between the symmetric sequence spaces S1

nd S2 via a complete minimal system X = (xn)∞n=1 if the series transform

(an)∞n=1 ↦→

∞∑
n=1

an xn

defines a bounded operator from S1 into X and the coefficient transform is a bounded operator
from X into S2. A complete minimal system is said to be squeeze symmetric if it is squeezed

etween two symmetric sequence spaces that are close to each other in the sense that the
undamental functions of their unit vector systems are equivalent.

Bidemocratic complete minimal systems are squeeze symmetric. In turn, squeeze symmetry
s stronger than symmetry for largest coefficients.

Any democratic sequence (xn)∞n=1 is semi-normalized, that is,

inf
n

∥xn∥ > 0, sup
n

∥xn∥ < ∞.

In the case when X is a Schauder basis, its associated biorthogonal system (xn, x∗
n)∞n=1 is

ounded, i.e.,

sup
n

∥xn∥
x∗

n

 < ∞. (2.5)

ince any minimal system becomes normalized under rescaling, and semi-normalization is
reserved by equivalence, it is natural to assume the minimal systems we deal with to be semi-
ormalized. In turn, (2.5) is a feature of the complete minimal system X that is convenient
to impose in order to implement the thresholding greedy algorithm (TGA for short) with

5
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respect to X . Note that if X is a semi-normalized complete minimal system whose associated
iorthogonal system (xn, x∗

n)∞n=1 is bounded, then

sup
n

x∗

n

 < ∞.

ence, the coefficient transform maps X into c0. Consequently, for each f ∈ X and m ∈ N
here is a (not necessarily unique) greedy set A of f with |A| = m. Let Am( f ) denote the
ne set for which max A is minimal. The TGA is the sequence (Gm)∞m=1 of nonlinear operators
iven by

Gm :X → X, f ↦→ SAm ( f ).

Given f ∈ X, an arbitrary small perturbation of f yields a signal g ∈ X for which the greedy
ets of any cardinality are unique. This observation leads to the paradigm that any functional
roperty relative to the map f ↦→ Am( f ), f ∈ X, yields a property of the map

f ↦→ {SA( f ) : A greedy set of f , |A| = m} , f ∈ X.

For simplicity, throughout this paper we will use the term basis to refer to a semi-normalized
omplete minimal system whose associated biorthogonal system is bounded. A basic sequence
ill be a sequence that is a basis of its closed linear span.

. Greedy bases from an isometric point of view

A basis X of a Banach space X is said to be greedy if the TGA relative to the basis provides
ptimal sparse approximations, that is, there is a constant G ≥ 1 such that

∥ f − SA( f )∥ ≤ G ∥ f − g∥ , (3.1)

henever g is a linear combination of m vectors from X and A is a greedy set of f ∈ X with
A| = m. If (3.1) holds for a certain constant G ≥ 1, we say that X is G-greedy.

Konyagin and Temlyakov [46] proved that X is a greedy basis if and only if it is democratic
nd unconditional. Quantitatively, optimizing the techniques from [46] yields that G-greedy
ases are G-unconditional and G-democratic, and that if X is C-lattice unconditional and

D-democratic, then X is G-greedy, where G = C(1 + D). This last estimate implies that the
est we can say about isometrically democratic and isometrically lattice unconditional bases is
ust that they are 2-greedy, which is not optimal for studying isometrically greedy bases.

The motivation behind this section lies in the analysis of the optimality of the thresholding
reedy algorithm relative to bases in Banach spaces. This optimality is reflected in the sharpness
f the constants that appear in the definitions of the different types of greedy-like bases.
hat justifies studying the “isometric” case in general is the fact that various approximation

lgorithms converge trivially when some appropriate constant is 1.
The first movers in this direction were Albiac and Wojtaszczyk, who in [21] characterized

sometrically greedy bases using symmetry for largest coefficients instead of democracy. In fact,
ny G-greedy basis is G-unconditional and G-SSL, and any C-unconditional D-symmetric
or largest coefficients basis is C D-greedy (see [3, Remark 3.8]). In particular, a basis is
sometrically greedy if and only if it is isometrically unconditional and has Property (A). These
stimates opened the door to study the following general question.

uestion 3.1. Given a greedy basis of a Banach space X, does it become 1-greedy under a

uitable renorming of the space?

6
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Any Banach space with a greedy basis can be renormed so that the basis becomes
sometrically unconditional while the SSL constant does not increase. Thus, Question 3.1
educes to the problem of finding a renorming of X so that the basis becomes isometrically
ymmetric for largest coefficients.

Isometrically symmetric bases are isometrically greedy, hence Banach spaces with a sym-
etric basis can be renormed so that the basis becomes isometrically greedy. Despite the

act that there are isometrically subsymmetric bases which are not isometrically greedy (see
xamples in [21]), the answer to Question 3.1 seems to be positive for all the subsymmetric
ases found in the literature. For instance, this is the case with Garling sequence spaces, a type
f spaces modelled after an example of Garling from [42] (cf. [17]).

roblem 1. Does any subsymmetric basis of a Banach space become 1-greedy under a suitable
enorming of the space?

There are isometrically greedy bases that are not subsymmetric (see [37, Theorem 6.9]). So,
uestion 3.1 also makes sense for greedy bases that are not subsymmetric. The Haar system

n L p := L p([0, 1]), p ∈ (1, 2)∪ (2, ∞), is probably the most important example of such bases
see [54]).

roblem 2. Let 1 < p < ∞, p ̸= 2. Is there a renorming of L p so that the L p-normalized
aar system becomes 1-greedy?

Notice that the Haar system in L p for 1 < p < ∞ is bidemocratic, and so are the
ubsymmetric bases of any Banach space. Thus answering Question 3.1 in the positive for
idemocratic greedy bases would also answer in the positive Problems 1 and 2. In this regard
e mention the following approximation to a solution of Problem 2.

heorem 3.2 ([34, Proposition 1.1]). Let X be a bidemocratic greedy basis of a Banach space
and let C > 1. Then there is a renorming of X so that X becomes C-greedy.

A more specific question than Question 3.1 that still covers Problem 2 is whether it admits a
ositive answer for spaces with nontrivial type. In fact, the fundamental function ϕu = (sm)∞m=1
f any superdemocratic basis of a Banach space with nontrivial type has the upper regularity
roperty (URP for short), that is,

srm ≤
r
2

sm m ∈ N,

for some r ∈ N (see [33, Proof of Proposition 4.1]). Besides, greedy bases, or, more generally,
squeeze symmetric bases whose fundamental function has the URP, are bidemocratic (see [13,
Lemma 9.8 and Proposition 10.17(iii)]). In this regard, it is natural to wonder whether the
existence of a lattice structure on X could aid in obtaining a positive answer to Question 3.1.

Problem 3. Let X be a greedy basis of a superreflexive Banach lattice X. Is there a renorming
of X so that X becomes 1-greedy?

The fundamental function of the Haar system in L p, 1 < p < ∞, grows as (m1/p)∞m=1 [53],
o we could also address Problem 2 by focussing on the study of greedy basis whose
undamental functions grow as (mα)∞m=1 for some 0 < α < 1. We point out that the answer

to Question 3.1 is negative for greedy bases other than the canonical basis of ℓ1, whose
fundamental function grows as (m)∞ (see [37, Corollary 5]).
m=1

7
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4. Isometric almost greediness

A basis X of a Banach space X is said to be almost greedy if the TGA provides optimal
pproximations by means of coordinate projections, that is, there is a constant 1 ≤ G (G-almost
reedy) such that

∥ f − SA( f )∥ ≤ G ∥ f − SB( f )∥

whenever A is a greedy set of f and B ⊆ N satisfies |A| = |B|. In this section we are
concerned about finding the optimal almost greediness constant.

Question 4.1. Given an almost greedy basis X of a Banach space X, is there a renorming of X
so that X becomes isometrically almost greedy or, at least, C-almost greedy with C arbitrarily
close to 1?

Dilworth et al. provided a characterization of almost greedy bases that runs parallel to that
of greedy ones. To achieve that they used a weaker form of unconditionality (namely, quasi-
greediness) which was introduced in [46]. We recall that basis X is said to be C-quasi-greedy,

≥ 1, if ∥g∥ ≤ C ∥ f ∥ for all f ∈ X and all greedy projections g of f . Of course, X is
quasi-greedy if and only if there is a (possibly different) constant C such that

∥ f − g∥ ≤ C ∥ f ∥ (4.1)

for all f ∈ X and all greedy projections g of f . If (4.1) holds for some C ≥ 1, we say that X
is C-suppression quasi-greedy.

Theorem 4.2 ([33]*Theorem 3.3). Let X be a basis of a Banach space. Then X is almost
reedy if and only if it is democratic and quasi-greedy.

Theorem 4.2 is very nice but does not give quantitative estimates that could aid to
ddress Question 4.1. It is known (see [3]) that a G-almost greedy basis is G-symmetric for
argest coefficients and G-suppression quasi-greedy; and conversely, D-symmetric for largest
oefficient and C-suppression quasi-greedy bases are C D-almost greedy. Hence, the almost
reedy constant is close to one if and only if both the SLC constant and the suppression
uasi-greedy constant are.

Being almost greedy is a weaker condition than being greedy. Taking this into consideration
e could expect that obtaining renormings that improve the almost greedy constant would be

asier than improving the greedy constant by renorming the space. However, in order to tackle
uestion 4.1 we will have to face a new obstruction: since quasi-greediness is not a linear

ondition, we should develop techniques for improving the suppression quasi-greedy constant.
nother general question arises.

uestion 4.3. Given a quasi-greedy basis X of a Banach space X, is there a renorming of
so that X becomes 1-suppression quasi-greedy or, at least, C-suppression quasi-greedy with
arbitrarily close to 1?

Since 1-quasi greedy bases are 1-suppression unconditional [1], there is no point in replacing
he suppression quasi-greedy constant with the quasi-greedy constant in the isometric part of
uestion 4.3. In contrast, the following problem makes perfect sense and remained open for
long time until very recently, when it was solved in the positive while this paper was under
evision (see [24]).

8
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Problem 4. Is there a Banach space with a conditional 1-suppression quasi-greedy basis?

Going back to almost greedy bases, we raise the problem whether it is possible to obtain
he almost greedy version of Theorem 3.2.

roblem 5. Given a bidemocratic almost greedy basis X of a Banach space X and C > 1,
is there a renorming of X with respect to which X is C-almost greedy?

When addressing Question 4.3 in the isometric case we should take into account that a basis
is 1-almost greedy if and only if it has Property (A) (see [3]), so the problem of improving the
suppression unconditionality constant disappears in this case, and we must only take care of
improving the SLC constant. Besides, once it is shown that isometric symmetry for largest
coefficients implies quasi-greediness, we should clarify whether it also implies a stronger
condition.

A recent construction from [14] showed the existence of a renorming of ℓ1 with respect
to which the unit vector system has Property (A) but it is not 1-unconditional. However, this
result does not answer the main question concerning Property (A).

Problem 6. Does Property (A) imply unconditionality?

It is even unknown whether there is a constant C so that any basis with Property (A) is
-unconditional. Note that Property (A) implies 1-suppression quasi-greediness.

5. Squeezing spaces between Lorentz spaces

In this section we will need the dual property of the URP. We say that a sequence (sm)∞m=1
in (0, ∞) has the lower regularity property (LRP for short) if there is an integer r ≥ 2 such

2sm ≤ srm, m ∈ N.

Given 0 < q ≤ ∞ and a nondecreasing sequence σ = (sm)∞m=1, we adopt the convention
hat s0 = 0, and define the Lorentz sequence space

dq (σ ) =

⎧⎨⎩ f ∈ c0 : ∥ f ∥q,w :=

(
∞∑

n=1

(bn sn)q sn − sn−1

sn

)1/q

< ∞

⎫⎬⎭ ,

here (bn)∞n=1 is the nonincreasing rearrangement of | f |, with the usual modification if q = ∞.
f σ is doubling, that is,

sup
m

sm

s⌈m/2⌉

< ∞

hen dq (σ ) is a quasi-Banach space. In fact, dq (σ ) is a Banach space provided that 1 ≤ q < ∞.
owever, d∞(σ ) is a Banach space if and only if σ has the URP. Besides, these spaces are

eflexive if and only 1 < q < ∞ and σ has the URP, and superreflexive if and only if
1 < q < ∞ and σ has both the URP and the LRP (see [23]).

For a fixed doubling sequence σ , (dq (σ ))q>0 is an increasing family of symmetric sequence
spaces whose fundamental function grows as σ . If σ = (m1/p)∞m=1 for some 0 < p < ∞, then

q (σ ) is the classical Lorentz sequence space ℓp,q .
Given a basis (xn)∞n=1 with dual basis (x∗

n)∞n=1, for f ∈ X we put

ε( f ) = (sign(x∗

n( f )))∞n=1 ∈ EN,

here sign(0) = 1 and sign(λ) = λ/ |λ| otherwise.
9
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The proof of Theorem 4.2 heavily depends on showing first that if a basis X is quasi-greedy
then the restricted truncation operators

Rm :X → X, f ↦→ min
n∈Am ( f )

⏐⏐x∗

n( f )
⏐⏐1ε( f ),Am ( f ), m ∈ N,

re uniformly bounded. This condition, coined in [11] as truncation quasi-greediness or TQG
or short, is equivalent to the existence of a constant C ≥ 1 so that

min
n∈A

⏐⏐x∗

n( f )
⏐⏐ 1ε( f ),A

 ≤ C ∥ f ∥

or all f ∈ X and all greedy sets A of f .
A basis X is truncation quasi-greedy if and only if the coefficient transform maps X into

∞(ϕ l ). Moreover, for any basis X the series transform defines a bounded operator from d1(ϕu)
nto X (see [13, Section 9]). These results yield that a basis is squeeze symmetric if and only
f it is truncation quasi-greedy and democratic; consequently, almost greedy bases are squeeze
ymmetric (cf. [2]). We also infer that if X is squeeze symmetric then X is squeezed between
1(ϕu) and d∞(ϕu) via X .

While d1(ϕu) is a Banach space, d∞(ϕu) could be nonlocally convex. In fact, if ϕu(m) ≈ m
nd the coefficient transform maps X into a symmetric Banach space then the basis X is
quivalent to the standard unit vector basis of ℓ1. To ensure that an almost greedy basis can be
queezed between two Banach spaces we must impose additional conditions, such as X having
ontrivial type so that ϕu verifies the URP.

When we want to sandwich a Banach space X between two symmetric spaces S1, S2 that
itness that the basis of X is squeeze-symmetric, in general we cannot guarantee that S1 and
2 retain all the features of X. It may happen that X is locally convex, for instance, but that S2

s not. Or that X has nontrivial type but we lose that feature in one of the squeezing spaces.
hen dealing with superreflexive spaces this inconvenience disappears. In fact, if X is a quasi-

reedy basis of a superreflexive Banach space then there is 1 < r < ∞ such that the series
ransform defines a bounded operator from dr (ϕu) into X (see [23]). Besides, if the basis is

almost greedy, a duality argument yields that the coefficient transform is a bounded operator
from X into dq (ϕu) for some 1 < q < ∞, whence X is squeezed between the superreflexive
spaces dr (ϕu) and dq (ϕu). We wonder whether superreflexive spaces with a non-democratic
quasi-greedy basis can be squeezed following a similar pattern.

Problem 7. Let X be a quasi-greedy basis of a superreflexive Banach space X. Is there
< ∞ such that the coefficient transform is a bounded operator from X into dq (ϕ l )?

Here we point out that the answer to Problem 7 is positive for semi-normalized unconditional
bases (see [4, Theorem 7.3]).

6. The TGA and Elton near unconditionality

A long standing question in basis theory, which was solved in the negative by Gowers and
Maurey [43], asked whether all Banach spaces contained an unconditional basic sequence.
Bearing in mind Rosenthal’s theorem [49], which states that any bounded sequence in a Banach
space either is equivalent to the canonical ℓ1-basis or has a weakly Cauchy subsequence, the
most natural way to look for a positive answer to this question was proving that any semi-
normalized weakly null sequence has an unconditional basic sequence. When Maurey and
Rosenthal [47] solved in the negative this question, the problem turned to finding subsequences

of weakly null sequence that satisfy weaker forms of unconditionality.

10
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In this ambience, Elton [41] introduced near unconditional bases and proved that any
ormalized weakly null sequence of a Banach space contains a nearly unconditionality
ubsequence. Suppose X is a basis of a Banach space X. Set

Q = { f ∈ X : ∥ f ∥∞ := sup
n

⏐⏐x∗

n( f )
⏐⏐ ≤ 1}.

iven a number a ≥ 0 and f ∈ X put

A(a, f ) := {n ∈ N :
⏐⏐x∗

n( f )
⏐⏐ ≥ a}.

The basis X is said to be nearly unconditional (NU for short) if for each a ∈ (0, 1] there is a
constant C such that

∥SA( f )∥ ≤ C ∥ f ∥ , f ∈ Q, A ⊆ A(a, f ). (6.1)

The unconditionality threshold function

φ : (0, 1] → [1, ∞)

is defined for each a as the smallest value of the constant C in (6.1). Since a basis is
nconditional if and only if φ is bounded, the unconditionality threshold function can be used
o measure how far a basis is from being unconditional. We can also measure this distance by

eans of the unconditionality parameters

km := sup
|A|≤m

∥SA∥ , m ∈ N.

The latter way of measuring unconditionality is coarser than the former. In fact,

km ≤ 2 sup
n

∥xn∥ sup
n

x∗

n

φ(1/m), m ∈ N,

see [9, Lemma 6.1]).
Similarly to greedy, almost greedy, and squeeze symmetric bases, there is an

nconditionality-like condition which combined with democracy characterizes symmetry for
argest coefficients. This condition is called quasi-greediness for largest coefficients, or QGLC
or short. We say that a basis (xn)∞n=1 is C-QGLC if1ε,A

 ≤ C
1ε,A + f


or all A ⊆ N finite, all ε ∈ EA, and all f ∈ X with ∥F( f )∥∞ ≤ 1 such that supp( f ) ∩ A = ∅.

Oddly enough, quasi-greediness for largest coefficients and near unconditionality are the
ame property seen from different angles [8]. Besides, the unconditionality threshold function
f a QGLC basis satisfies

φ(a) = Ca−δ, 0 < a < 1, (6.2)

or some C ≥ 1 and some δ ∈ (0, ∞).
Truncation quasi-greedy bases of Banach spaces fulfil a better estimate, namely,

φ(a) = C(1 − log a), 0 < a < 1, (6.3)

or some constant C (see [9, Theorem 6.5]).
While QGLC bases need not be TQG [10], it seems to be unknown whether (6.2) is optimal

or QGLC bases.

roblem 8. Is there a nearly unconditional basis whose threshold unconditionality function
oes not have a logarithmic growth?
11
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Elton’s aforementioned subsequence extraction principle has been improved. In fact, it
s known that any semi-normalized weakly null sequence has a truncation quasi-greedy
ubsequence (see [5,36]). However, solving the quasi-greedy basic sequence problem has
roven to be a more elusive task.

roblem 9. Does any Banach space has a quasi-greedy basic sequence?

Any Banach space with an unconditional spreading model which is nonequivalent to the
anonical c0-basis has a quasi-greedy basic sequence [36] (cf. [5]). So, in order to address
roblem 9 it would suffice to focus on Banach spaces without an unconditional basis and
hose unique unconditional spreading model is the standard c0-basis.

. Semi-greedy bases

A basis X of a Banach space X is said to be semi-greedy if there is a constant C such that for
all f ∈ X and all greedy sets A of f there is h ∈ [xn : n ∈ A] such that ∥ f − h∥ ≤ C ∥ f − g∥

for all g ∈ X with |supp(g)| ≤ |A|. This condition can be reformulated in terms of the
Chebychev-type greedy algorithm, which assigns to every f ∈ X and every m ∈ N a vector
Cm( f ) that minimizes the distance ∥ f − h∥ when h ∈ [xn : n ∈ Am( f )].

Dilworth et al. [32] proved in 2003 that almost greedy bases are semi-greedy. Berná
howed in 2019 that semi-greedy and almost greedy bases are equivalent concepts for Schauder
ases [26], and a few years later, in 2023, Berasategui and Lassalle [25] demonstrated that this
s true even when the hypothesis of being Schauder is dropped.

Semi-greedy bases, as well as all the types of bases we have considered so far, can be
efined analogously in the wider framework of (not necessarily locally convex) quasi-Banach
paces. Most results on greedy-like bases that were originally stated and proved in Banach
paces hold for quasi-Banach spaces, although the constants involved could be worse. For
nstance, this is the case with the characterizations of greedy, almost greedy, squeeze symmetric,
ymmetric for largest coefficients, and super-democratic bases mentioned above (see [13]).
owever, it is unknown whether semi-greedy bases behave in the same way in non-locally

onvex quasi-Banach spaces.

uestion 7.1. Are semi-greedy bases of quasi-Banach spaces almost greedy?

Fig. 1 represents the relations between the different forms of greediness and unconditionality
we have considered. A double arrow means an implication between the two classes of bases
involved. A double dashed arrow means that the implication holds under the extra assumption
that the basis is democratic. A single dashed arrow means that the implication holds under the
extra assumption that the space is locally convex.

8. Existence of greedy bases

There are well-known separable Banach spaces, such as L1, without an unconditional basis,
hence without a greedy basis.

If a Banach space has a (normalized) unconditional basis we find instances where this basis
is, additionally, democratic thanks to the geometry of the space, hence that basis ends up being
greedy. For example, this is what happens with subsymmetric bases, with the unit vector system
of Tsirelson’s space, or with the Haar system of both the dyadic Hardy space H1 and L p for
< p < ∞.

12
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Fig. 1. Scale of greedy-like bases.

On the other hand, we find classical Banach spaces whose natural basis is unconditional
nd non-democratic, which might end up having a greedy basis or not. For instance, neither
p ⊕ ℓq nor the mixed-norm sequence spaces

Z p,q := ℓq (ℓp),

p, q ∈ [1, ∞], p ̸= q, (if some index is ∞ we replace it for c0) have a greedy basis [40,51].
owever, for p and q in the same range on indices, the Besov spaces

Bp,q =
(
⊕

∞

n=1ℓ
n
p

)
ℓq

have a greedy basis if and only if 1 < q < ∞ [30]. The original Tsirelson’s space does not
even have a democratic basis [32]. Note that the space L p for p ∈ (1, 2) ∪ (2, ∞) has a greedy
basis but its complemented subspace ℓp(ℓ2) does not!

Some problems remain open within this research topic. As far as sequence spaces are
concerned, the more relevant problem seems to be settling the greedy basis structure of Nakano
spaces.

Given p = (pn)∞n=1 in [1, ∞), the Nakano space (a.k.a. variable-exponent Lebesgue space)
ℓ( p) consists of all sequences (an)∞n=1 such that

∞∑
n=1

|an|
pn < ∞.

If supn pn = ∞ the space is not separable, in which case we replace it for its separable part.
The unit vector system is not a greedy basis for ℓ( p) unless ℓ( p) = ℓp for some p [15]. If

he sequence p converges to 1 or to ∞, every complemented unconditional basis sequence of
( p) is equivalent to a subbasis of the canonical basis [28], and we can infer that ℓ( p) does

not have a greedy unless ℓ( p) = ℓ1 or ℓ( p) = c0.

Problem 10. Let p = (pn)∞n=1be a sequence in [1, ∞) with limn pn ∈ (1, ∞). Does ℓ( p) have

a greedy basis?

13
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If limn pn = 2 it is even unknown whether ℓ( p) has a unique unconditional basis (up to
rescaling, equivalence and permutation).

As for function spaces, it is known [65] that if X is a rearrangement invariant Banach
pace over [0, 1], then the Haar system is a greedy basis for X if and only if X = L p for
ome 1 < p < ∞. The question of whether rearrangement invariant Banach spaces other that

Lebesgue spaces have a greedy basis naturally arises. Here, the proximity of the space to L1
r L∞ may play a role, so it may be convenient to assume X to be superreflexive. We propose
tarting to explore this question in the particular case of Orlicz spaces.

roblem 11. Let F : [0, 1] → [0, ∞) be a q-convex and r-concave Orlicz function for some
> 1 and r < ∞. Does ℓF have a greedy basis?

The linear structure of nonlocally convex quasi-Banach spaces is more rigid than the
tructure of Banach spaces. It is plausible that any result stating the nonexistence of greedy
asis for the spaces of a family of Banach spaces can be extended to their nonlocally convex
elatives (see [13, Section 11.3]). In contrast, extending to the nonlocally convex setting an
xistence result may require a more careful analysis. Since certain locally convex Besov spaces
ave a greedy basis, we wonder about the existence of greedy bases for nonlocally convex
esov spaces.

roblem 12. Let 0 < p < 1 < q < ∞. Does Bp,q have a greedy basis?

If p, q ∈ (0, 1], the spaces Bp,q and Z p,q have a unique unconditional basis [20,45] whereas
B1,2 and Z1,2 do not [27]. As of today it is unknown whether the spaces Bp,2 or Z p,2 have a
nique unconditional basis. Answering in the positive Problem 12 would yield a normalized
nconditional basis B of Bp,2 nonequivalent to any permutation of the canonical basis. Since
he unit vector systems of ℓp and ℓ2 are the unique democratic subbases of the canonical basis

of Z p,2, B would not be equivalent to any subbasis of Z . Therefore, the direct sum of B
nd Z would be a basis of a space isomorphic to Z p,2 nonequivalent to any permutation of Z .

. Existence of almost greedy bases

Once we know that a certain Banach (or quasi-Banach) space does not have a greedy basis,
e can ask ourselves whether it has, at least, an almost greedy basis. To tackle this problem,
ilworth et al. [32] invented a method for building conditional almost greedy bases that works

or a broad class of spaces. To be precise, applying this method, which we call for short the
KK method, yields conditional almost greedy bases for any Banach space that contains a

omplemented copy of ℓ1, and for any quasi-Banach space that contains a complemented copy
f a superreflexive symmetric sequence space (see [7,16,32]). The DKK method produces
lmost greedy bases for Z p,q and ℓp ⊕ ℓq when max {p, q} > 1 or min {p, q} ≥ 1. It also
ives almost greedy bases for Bp,q when q > 1 or min {p, q} ≥ 1. If p, q ∈ (0, 1), then
either ℓp ⊕ ℓq nor Z p,q nor Bp,q has an almost greedy basis unless p = q [6]. The following

problem raises the question on the existence of almost greedy bases in five of those spaces.

Problem 13. Let 0 < p < 1 and let X be ℓ1 ⊕ ℓp, Z1,p, Z p,1, B1,p or B1,p. Does X have an
lmost greedy basis?

We point out that apart from the DKK method, which does not seem to work to solve
roblem 13, we do not find in the literature many other techniques that can be used for building
lmost greedy bases.
14
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The first example of a conditional quasi-greedy basis, which turned out to be also demo-
ratic, was given by Konyagin and Temlyakov [46]. Although their technique allows small
ariations (see [13, Theorem 11.39]), it is far from being suited to solve Problem 13. Other
onstructions just give almost greedy bases for particular spaces. Let us mention a couple of
esults that yield bases for spaces to which the DKK method cannot be applied. The first one,
hich serves to construct a conditional almost greedy basis for ℓp, 0 < p ≤ 1, asserts that the
indenstrauss basis is conditional and almost greedy in ℓp (see [18,35]). The second one says

hat the Haar system is an almost greedy basic sequence of BV(Rd ), d ≥ 2 [29,64].

0. A retrospective look at the role of Schauder bases for implementing the TGA

The TGA was initially studied for Schauder bases of Banach spaces. Wojtaszczyk took the
ead in studying the TGA within the framework of complete minimal systems in quasi-Banach
paces, but his initiative did not have many followers. Since the natural order in the sequence
f the positive integers does not play a significant role in implementing the greedy algorithm,
t must be conceded that developing the theory for Schauder bases is somewhat unnatural and
imiting. Besides, the fact of not taking for granted a priori Schauder’s condition helps isolate
he ingredients in the proofs of the important results. It could be argued that minimal systems
hat are not Schauder bases do not appear naturally, to the extent that the following important
roblem remains open.

roblem 14. Is there a quasi-greedy basis that cannot be rearranged in such a way that it
ecomes a Schauder basis?

If we replace quasi-greediness with truncation quasi-greediness in Problem 14, the answer
o the question is positive. In fact, there are bidemocratic bases (xn)∞n=1 such that (xϕ(n))∞n=1 is
ot a Schauder basis for any permutation ϕ of N (see [12]).

1. Dual bases of quasi-greedy bases

There are Banach spaces with a quasi-greedy basis whose dual basis is not quasi-greedy.
ake, for instance, the Lindenstrauss basis of ℓ1. In contrast, the dual basis of any bidemocratic
uasi-greedy basis is quasi-greedy [33, Corollary 5.5]. Consequently, the dual basis of an almost
reedy basis of a Banach space with nontrivial type is almost greedy. Since all known methods
or building conditional quasi-greedy bases give almost greedy bases, and the dual basis of a
ormalized unconditional basis is obviously quasi-greedy, no example of a quasi-greedy basis
f a Banach space with nontrivial type whose dual basis is not quasi-greedy is known. In
articular, we pose the following problem.

roblem 15. Let 1 < p < ∞, p ̸= 2. Does there exist a quasi-greedy basis of ℓp whose dual
asis in not quasi-greedy?

Note that any quasi-greedy basis of ℓ2 is almost greedy [63, Theorem 3], whence its dual
asis is quasi-greedy.

2. Banach envelopes of quasi-greedy bases

Given a quasi-Banach space X there is a pair (X̂, JX) that satisfies the universal property

ssociated with all pairs (Y, T ) consisting of a Banach space Y and a linear contraction

15
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T : X → Y. We call X̂ the Banach envelope of X and JX : X → X̂ the envelope map of
.
If X is a basis of X, then X̂ := JX(X ) is a basis of X̂ that inherits from X all its linear

roperties. For instance, if X is normalized and unconditional in X then X̂ is (semi-normalized
nd) unconditional in X̂.

As far as nonlinear properties are concerned, there are instances where X is greedy andˆ is not democratic (see [13, Section 11.7]), hence not greedy. Determining whether weaker,
onlinear forms of unconditionality pass to the Banach envelope is practically a wide open
roblem. Here we highlight the following important case.

roblem 16. Let X be a quasi-greedy basis of a quasi-Banach space X. Is X̂ a quasi-greedy
asis of X̂?

3. Weak Chebyshev greedy algorithm

So far we have concentrated and discussed a special case of sparse approximation with
espect to a basis and a very specific algorithm to carry out such approximation, namely the
hresholding Greedy Algorithm. In our last section we mostly continue to discuss the case of
ases but instead of the TGA we consider another greedy-type algorithm, which was introduced
nd studied for sparse approximation with respect to an arbitrary dictionary (see [55]).

Indeed, in many applications it is convenient to replace a basis by a more general system
hich may be redundant, that is to say, repetitions are allowed. This latter setting is much
ore complicated than the former (the basis case), however there is a solid justification of the

mportance of redundant systems in both theoretical questions and in practical applications in
umerical analysis (see for instance [39,44,52]). The reader can find further discussion of this
opic in the books [50,58,60,61] and the survey papers [56,57].

In a general setting we will be working in a Banach space X with a redundant system of
lements that is called a dictionary D. Recall that a set of elements (functions) D from X is a
ictionary if each g ∈ D has ∥g∥ = 1, and the closure of D is X.

A signal (or function) f ∈ X is said to be m-sparse with respect to D if it admits a
epresentation f =

∑m
i=1 ci gi with gi ∈ D, i = 1, . . . , m. The set of all m-sparse elements is

denoted by Σm(D).
For a given function f0 ∈ X, the error of the best m-term approximation is defined as

σm( f0,D) := inf
g∈Σm (D)

∥ f0 − g∥ .

In a broad sense, we are interested in the following fundamental question of sparse
pproximation with redundancy.

uestion 13.1. How to design a practical algorithm relative to a dictionary that builds sparse
pproximations comparable (in the sense of error) to the best m-term approximations?

Of course, this is too big of a question which needs to be tackled in specific situations,
ut the pattern is the same in all of them, namely we introduce and study an approximation
ethod given by a sequence of maps (an algorithm) A = (Am)∞m=1 relative to a dictionary D in
Banach space X. That is, Am( f ) belongs to Σm(D) for all f ∈ X. Obviously, for any f ∈ X

nd any m ∈ N we have

∥ ∥
f − Am( f,D) ≥ σm( f,D).

16
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We are interested in such pairs (D,A) for which the algorithm A provides approximation
close to the best m-term approximation. In order to measure the efficiency of this algorithm
we introduce the corresponding definitions.

Definition 13.2. We say that D is an almost greedy dictionary with respect to A if there exist
constants C1 and C2 such that for any f ∈ X and m ∈ N f − A⌈C1m⌉( f,D)

 ≤ C2σm( f,D).

If D is an almost greedy dictionary with respect to A then A gives almost ideal sparse
approximations; it provides a ⌈C1m⌉-term approximant as good (up to a constant C2) as the
ideal m-term approximant for every f ∈ X. In the case when C1 = 1 we call D a greedy
dictionary.

We also need a more general definition.

Definition 13.3. Let φ(u) be a function such that φ(u) ≥ 1. We say that D is a φ-greedy
dictionary with respect to the algorithm A if there exists a constant C3 such that for all f ∈ X
and all m ∈ N, f − A⌈φ(m)m⌉( f,D)

 ≤ C3σm( f,D).

It was shown in [59] that the Weak Chebyshev Greedy Algorithm, which we define
omentarily, is a solution to Question 13.1 for a special class of dictionaries.
For a nonzero element g ∈ X, by the Hahn–Banach theorem there exists a norming (or

eak) functional for g, i.e., an element Fg ∈ X∗ with
Fg


X∗ = 1 and such that Fg(g) = ∥g∥X.

et f0 ∈ X be given. Then for each m ≥ 1 and any weakness parameter t ∈ (0, 1] we have
he following inductive definition.

Choose any element ϕm := ϕc,t
m ∈ D satisfying⏐⏐F fm−1 (ϕm)

⏐⏐ ≥ t sup
g∈D

⏐⏐F fm−1 (g)
⏐⏐ .

Put Φm := Φ t
m := span(ϕ j : 1 ≤ j ≤ m) and then define Gm := Gc,t

m to be the best
approximant to f0 from Φm .
Finally, let fm := f c,t

m := f0 − Gm .

The Weak Chebyshev Greedy Algorithm (WCGA for short) (see [55]) is a generalization
or Banach spaces of the Weak Orthogonal Matching Pursuit (WOMP). In a Hilbert space
he WCGA coincides with the WOMP. The WOPM is very popular in signal processing, in
articular in compressed sensing. In the case when t = 1, the WOMP is called Orthogonal
atching Pursuit (OMP).
We note that the properties of a given basis in a Banach space with respect to the TGA and

ith respect to the WCGA could be very different, both from a qualitative and a quantitative
pproach. To illustrate the differences in the performance of the TGA and WCGA we use the
-variate trigonometric system T d as an example.

roposition 13.4 ([60, Theorem 2.2.1]). Let 1 ≤ p ≤ ∞, and set h(p) = |1/2 − 1/p|. There
s a constant C such thatGm( f, T d )


p ≤ Cmh(p)

∥ f ∥p , m ∈ N, f ∈ L p(Td ).

oreover, the extra factor mh(p) cannot be improved.
17
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The following inequalities were obtained very recently (see [62]).

roposition 13.5. Let 2 ≤ p < ∞. For any f ∈ L p and for each m ∈ N,Gm( f, T d )


p ≤ C(p) ∥ f ∥
2/p
p ∥ f ∥

1−2/p
A1(T d ) . (13.1)

et 1 ≤ p ≤ 2. For any f ∈ L p and for each m ∈ N,Gm( f, T d )


p ≤ C(p) ∥ f ∥
p/2
p ∥ f ∥

1−p/2
A1(T d ) , (13.2)

where

∥ f ∥A1(T d ) :=

∑
k∈Zd

⏐⏐⏐ f̂ (k)
⏐⏐⏐ , f̂ (k) := (2π )−d

∫
Td

f (x)e−i(k,x)dx.

Clearly, the ∥·∥A1(T d ) norm is stronger than the ∥·∥p norm. However, it is important that in
13.1) and (13.2) the extra factor C(p) does not depend on m.

To compare those estimates with the ones we get for the WCGA we need to consider the real
rigonometric system because the Weak Chebyshev Greedy Algorithm has been well studied

ainly for real Banach spaces. The reader can find some results on the WCGA for complex
anach spaces in [31]. We will denote by RT the real trigonometric system

{1, sin(2πx), cos(2πx), . . . , sin(2πnx), cos(2πnx), . . . }

n [0, 1] and will let RTp be its normalized version in L p([0, 1]). Let

RT d
p = RTp × · · · × RTp

e the d-variate real trigonometric system. The following Lebesgue-type inequality for the
CGA was proved in [59].

roposition 13.6. Let 2 ≤ p < ∞, d ∈ N, and t ∈ (0, 1]. There are constants C1 and C2
uch that the WCGA with weakness parameter t relative to the d-variate trigonometric system

= RT d
p in L p gives f⌈C1m ln(m+1)⌉


p ≤ C2σm( f0,D)p, m ∈ N, f0 ∈ L p([0, 1]d ). (13.3)

roblem 17 (See [56, Problem 7.1]). Does (13.3) hold without the ln(m + 1) factor?

Proposition 13.6 is the first result on the Lebesgue-type inequalities for the WCGA with
espect to the trigonometric system. It is a first step towards the solution of Problem 17, but
he problem is still open.

The dissimilarities between the TGA and the WCGA can be realized as well from a
ualitative point of view. Take for instance, the class of quasi-greedy bases relative to the TGA,
hich is a rather narrow subset of bases close in a certain sense to the set of unconditional
ases. The situation is dramatically different for the WCGA. For example, if X is uniformly
mooth then WCGA converges for each f ∈ X with respect to any dictionary in X (see [58,
h. 6]).

There exists a general theory of the Lebesque-type inequalities for the WCGA with respect
o dictionaries satisfying certain conditions. The reader can find some of the corresponding
esults in [59] and [61, Ch. 8]. We only present here some corollaries of those general
esults in the case of bases satisfying certain conditions. For p ∈ (1, ∞) we use the notation
p′

= p/(p − 1).
18
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Proposition 13.7. Let X be a uniformly bounded orthogonal system normalized in L p(Ω )
or 1 < p < ∞, where Ω is a bounded domain. Then, given 0 < t ≤ 1 there are constants C1
nd C2 depending on p, t and Ω , such that f⌈C1m ln(m+1)⌉


p ≤ C2σm( f0,X )p, m ∈ N, f0 ∈ L p(Ω ), 2 ≤ p < ∞,

nd  f⌈
C1m p′−1 ln(m+1)

⌉
p

≤ C2σm( f0,X )p, m ∈ N, f0 ∈ L p(Ω ), 1 < p ≤ 2.

roposition 13.8. Let 2 ≤ p < ∞, d ∈ N, and t ∈ (0, 1]. Then the normalized d-variate
aar basis in L p satisfies f⌈

C1m2/p′
⌉

p
≤ C2σm( f0,Hd

p)p, m ∈ N, f0 ∈ L p([0, 1]d ),

for some constants C1 and C2.

Proposition 13.9. Let 1 < p ≤ 2 and t ∈ (0, 1]. Then the univariate Haar basis in L p
satisfies fC1m


p ≤ C2σm( f0,Hp)p, m ∈ N, f0 ∈ L p([0, 1]),

for some constants C1 and C2.

Proposition 13.10. Let γ ∈ (0, ∞), 1 < q ≤ 2, and t ∈ (0, 1]. Let X be a superreflexive
Banach space whose modulus of smoothness ρ satisfies ρ(u) ≤ γ uq for all u > 0. Assume that
X is a normalized Schauder basis for X. Then there are constants C1 and C2 such that f⌈

C1mq′ ln(m+1)
⌉ ≤ C2σm( f0,X ), m ∈ N, f0 ∈ X.

Proposition 13.11. Let 0 < t ≤ 1 and X be a normalized quasi-greedy basis for L p,
1 < p < ∞. Then f⌈C1m2(1−1/p) ln(m+1)⌉


p

≤ C2σm( f0,X ), m ∈ N, f0 ∈ L p, 2 ≤ p < ∞,

and  f⌈
C1m p′/2 ln(m+1)

⌉
p

≤ C2σm( f0,X ), m ∈ N, f0 ∈ L p, 1 < p ≤ 2,

for some constants C1 and C2.

Proposition 13.12. Let 0 < t ≤ 1 and X be a normalized uniformly bounded orthogonal
quasi-greedy basis for L p, 1 < p < ∞ (for existence of such bases see [38,48]). Then f⌈C1 m ln(ln(m+3))⌉


p ≤ Cσm( f0,X )p, m ∈ N, f0 ∈ L p, 2 ≤ p < ∞,

and  f⌈
C1m p′/2 ln(ln(m+3))

⌉
p

≤ C2σm( f0,X )p, m ∈ N, f0 ∈ L p, 1 < p ≤ 2,

for some constants C and C .
1 2
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The approximation method provided by WCGA is not as well studied as the TGA from the
oint of view of the Lebesgue-type inequalities and greedy-type bases. It is a very interesting,
lbeit very difficult, area of research. The reader can find recent results in this direction in the
aper [31]. We close with some open problems of this aspect of the theory in the special case
hen we study sparse approximation with respect to bases instead of with respect to redundant
ictionaries (see [61, p. 448]).

roblem 18. Characterize almost greedy bases with respect to the WCGA for the Banach
pace L p, 1 < p < ∞.

roblem 19. Is the d-variate trigonometric system RT d
p an almost greedy basis with respect

o the WCGA in L p(Td ), 1 < p < ∞?

roblem 20. Is the univariate Haar basis Hp an almost greedy basis with respect to the
CGA in L p, 2 < p < ∞?

roblem 21. Is the d-variate Haar basis Hd
p, d ≥ 2, an almost greedy basis with respect to

he WCGA in L p, 1 < p < ∞?

roblem 22. For each L p, 1 < p < ∞, find the best φ such that any Schauder basis is a
-greedy basis with respect to the WCGA.

roblem 23. For each L p, 1 < p < ∞, find the best φ such that any unconditional basis is
φ-greedy basis with respect to the WCGA.

roblem 24. Is there a greedy-type algorithm A such that the multivariate Haar system Hd
p

s an almost greedy basis of L p, 1 < p < ∞, with respect to A?

roblem 25. In all Propositions 13.7–13.8, 13.10–13.12 we do not know the right φ which
akes the corresponding bases φ-greedy with respect to the WCGA.
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