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We introduce a concept of greedy basis for a Banach space. It is a basis
¥ such that for each element its m-term approximation with regard to
V¥ can be realized (in the sense of order) by a greedy type algorithm. We
prove that a basis is greedy basis if and only if it is unconditional and
democratic. Democratic basis is a one such that the norm of any sum of
its elements is determined (within the multiplication by two constants)
by the number of summands. Some further discussion is also presented.

1. Introduction

Let a Banach space X with a basis ¥ = {¢p}32, |¥w]l = 1, k= 1,2,...,
be given. We consider the following theoretical greedy algorithm. For a given
element f € X we consider the expansion

00
f=) el )

k=1
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Let an element f € X be given. We call a permuiation o, p(j) = Bys
J=1,2,..., of the positive integers decreasing and write p = D( ) if

ler, ()] 2 lery ()] 2 .-

In the case of strict inequalities here D(f) consists of only one permutation.
We define the m-th greedy approximant of f with regard to the basis ¥
corresponding to a permutation p € D(f) by the formula

m

Gﬂl(fs \I}» P) = chj(f)wkf

i=1

This is a simple algorithm which describes a theoretical scheme (not com-
putationally ready) for m-term approximation of an element f. In order to
understand the efficiency of this algorithm we compare its accuracy with the
best possible one when the approximant is chosen among all linear combi-
nations of m terms from ¥. We define the best m-term approximation with
regard to ¥ as follows

om(f0) = ind ||f = cxtul,
ke keA

where inf is taken over all coefficients ¢; and sets of indices A with cardinality
#A = m. The best we can achieve with the algorithm G, is

“f - Gm(f, \P’p)” = Um(fv \11)7

or a little weaker

(1.1) If = Gu(f, ¥, p)|| £ Gowm(f, V)

for all elements f € X with a constant G = C(X, V) independent of f and
m.

Definition 1. We call a basis ¥ greedy basis if for every f € X there
exists a permutation p € D(f) such that (1.1) holds.

Proposition 1. If ¥ is a greedy basis, then (1.1) holds for any permuta-
tion p € D(f).

Denote by H,, := {H[}?2, the Haar basis on [0, 1) normalized in L,(0,1):
HY =1on[0,1)andfor k=2"4+1,n=0,1,...,1=1,2,...,2",

anle, oz [(20 - 2)271, (2 - 1)27)
Irip = _2'“/7” T € [(21 — 1)2—71—1,212—71—1 :
0, otherwise.
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The following theorem (see [T1]) establishes existence of greedy bases for

:(0,1), 1 < p< .
Theorem A. Let 1 < p < 00 and a basis ¥V be L,-equivalent to the Haar
basis Hy,. Then for any f € L,y(0,1) and any p € D(f) we have

Hf - (;171(f7 v, p)”Lp < C'(p’ ‘Il)am(fv \I’)LP

w1th a constant C'(p, V) independent of f, p, and m.

We use in this theorem the following definition of the L,-equivalence. We
at W= {Up32, is Ly-equivalent to H = {H}32, if for any finite set A
and any coefficients ¢, k € A, we have

Cup Y ek, <1 extirll, < Ca(p OIS exHillz,

keA keA keA

positive constants C'y(p, V), Co(p, ¥) which may depend on p and V.
[hus. each basis ¥ which is L,-equivalent to the univariate Haar basis H,,

is for L,(0,1), 1 < p < co. We note that in the case of Hilbert
-h orthonormal basis is a greedy basis with a constant G = 1 (see

give NOw t

the definitions of unconditional and democratic bases.

Definition 2. A basis ¥ = {¢;}2, of a Banach space X is said to
e unconditional if for every choice of signs § = {6;}32,, 6 = 1 or —1,

¢ = 1,2,..., the linear operator My, defined by

My ( ; (Lk’lllk) = ; a0y,

s a bounded operator from X into X.

The uniform boundedness principle implies that the unconditional con-

K := K(X, V) :=sup ||My]|
0

Remark. There are several equivalent definitions of unconditional basis
see [LT], [KS]). For instance, instead of signs # in Definition 2 one can take

every choice of Boolean sequence b = {bx}32,, by =0,0r 1,k =1,2,..., and
an equivalent definition of unconditional basis.

The following theorem is a well-known fact about unconditional bases (see
LT}, p.19).
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Theorem B. Let ¥ be an unconditional basis for X. Then for every
choice of bounded scalars {A}72,. we have

¢ o0
1D Ararn|| < 2K sup ARl ant]
k=1 g k=1

(in the case of real Banach space X we can take K instead of 2K ).

Definition 3. We say that a basis ¥ = {4¢}72, is a democratic basis if for
any two finite sets of indices P and () with the same cardinality, #P = #Q,
we have

(1.2) IS el < DI il

keP ke@
with a constant D := D(X, V) independent of P and Q.

We prove in Section 2 the following theorem.

Theorem 1. A basis is greedy if and only if it is unconditional and
democratic.

In Section 3 we show that the democratic basis is not necessarily a un-
conditional and vice versa. This means that we need both conditions (uncon-
ditionality and democracy) in Theorem 1. Some other related concepts will
be introduced and discussed in Section 3. In Section 4 we give examples of
greedy bases for functional spaces.

2. Proof of Theorem 1

The proof of the direct part of the theorem, that any unconditional and
democratic basis is a greedy basis, goes the same way as the proof of Theo-
rem A (see [T1] and also [T2, Lemma 2.1]). For completeness we shall present
this proof here. In fact we prove a little more, namely, that (1.1) holds for
any p € D(f). This combined with Theorem 1 implies Proposition 1.

Take any € > 0 and find

pm.(f) = Z bk,l/}k

ker

such that #P = m and

(2.1) ”f"pm(f)” < UT?L(f?‘I’)+€'
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for any finite set of indices A we denote by Sj the projector

SA(f) =Y er()x-

keA
The assumption that ¥ is unconditional implies that
-2 If = Sp(H)Il £ K(om(f,¥) + €).
Let pe D(f) and

Gm(fs¥,0) = Y er(f)dbe = Sq(f)-

keq

23 1 = Gl £, 9,0 < NIf = SE(HI+ 15p(F) = Sa(HII-

[he first term in the right-hand side of (2.3) is estimated in (2.2). We estimate
the second term. Clearly,

2.4 Sp(f) - Sa(f) = Sea(f) = Save(f).

Similarly to (2.2) we have

2.3 ”SQ\P(f)“ < I((Um(f’ ‘I’) + €)'

Let us estimate now [|Sp\q(f)||. By the definition of greedy algorithm G,

€ nave

2.6 A:= (Nl £ min jep(f)] =: B.
klenlil\)é) lew(f)] < klenQn\lPlck(f)'

Then, by the virtue of Theorem B we have

2.7) ISPl < 2K AN Y il
keP\Q
(2.8) 1S\p(NIl = RE)T'BIL D ull.
kEQ\P

(2.9) 1D ell< DIl Y well-

keP\Q keQ\P
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Combining (2.7)—(2.9) we obtain

(2.10) ISPl < 4DK?||Sq\p(f)])-

Using (2.5) and (2.10), we derive from (2.4) and (2.3) that

“f - Gm(f, ‘Ilv P)” S 4D1{3(a‘ln(f7 \I’) ¥ 6)

and, therefore, the inequality

“f - Gm(f7 \I'7p)” S 4D1‘,30m(f’ 'Il)

holds.

We prove now the inverse part of the theorem, namely, that a greedy basis
is always unconditional and democratic. Assume that a given basis ¥ satisfies
(1.1) for all f € X. We begin with the unconditionality. We shall prove that
for each function f € X and any finite set A we have

(2.11) 1SA(HI < (G + DA,

where G is from (1.1). It is well-known (see Remark from the Introduction)
that (2.11) implies that ¥ is a unconditional basis. Take a number N such
that

N > max |ex(f)|

and consider a new function

g:=f=SaA(f)+ N .

keEA
Then we obviously have
(2.12) am(g) < I£1l,
and
(2.13) Gn(9) := Gm(9,¥,p) = N Y _ 9.
ke

Thus, by our assumption that ¥ is a greedy basis, we get
If = SaA(HIl = llg = Gn(9)ll £ Gamlg) < GIIfll.

This implies (2.11).
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We proceed now to proving that ¥ is democratic. Let two finite sets P

and Q, #P = #¢ = m, be given. Take a third one Y such that #Y = m
and YNP=0,YNQ = 0. For a given finite set A denote

YA = Z Y.

keA

Fix any € > 0 and consider the function

f=(1+e)Yq+dy.

an(f) < (1+9)ll¥ell

1f = G NI = llrl-

Therefore, by the assumption that ¥ is greedy we get

2.14) Yyl < G(1+ €)|lvgll-
Similarly,

)

2.15 el £ G(1 + €|yl

Finally, combining the above two inequalities and taking into account that ¢
is arbitrarily small, we obtain the estimate

lpll < G2livoll-

This completes the proof of Theorem 1.

3. Examples

3.1. Unconditionality does not imply democracy

This follows from properties of the multivariate Haar system 'Hf, = HyXxH,
defined as the tensor product of the univariate Haar systems H,. The system-
H? is an unconditional basis for L,([0,1]?), 1 < p < cc. However, there is an
example (see [T2, Section 4]) suggested by R. Hochmuth that shows that H?
is not democratic for p # 2.
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3.2. Democracy does not imply unconditionality

Let X be the set of all real sequences & = (21, 22,...) such that

N

E Tn

n=1

llellx = sup

is finite. Clearly, X equipped with the norm || -
v € X, k=1,2,..., be defined as

x is a Banach space. Let

1, n=k
($e)n = {0, n # k.

Denote by X¢ the subspace of X generated by the elements ;. It is easy to
see that {1} is a democratic basis in Xo. However, it is not an unconditional
basis since

m m

> 3 (=1)ry

k=1 k=1

=m, while =i 1

3.3. Superdemocracy does not imply unconditionality

It is clear that an unconditional and democratic basis ¥ satisfies the
following inequality

(3.1) 1) Okl < Dsll D el

keP keQ

for any two finite sets P and @, #P = #@, and any choices of signs 6, = £1,
ke P,and ¢, = +1, k € Q.

Definition 3.1. We say that a basis ¥ is a superdemocratic basis if it
satisfies (3.1).

Theorem 1 implies that a greedy basis is a superdemocratic one. Now we
will construct an example of superdemocratic basis which is not an uncondi-
tional basis and therefore, by Theorem 1, it is not a greedy basis.

Let X be the set of all real sequences z = (21, ,...) € I3 such that

N

}E:mn/\/ﬁ

n=1

llz]]s = sup

is finite. Clearly, X equipped with the norm

- 1F = max([] - [l ] - [11)
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's a Banach space. Let ¢y, € X,k =1,2,..., be defined as
1, n=k

on={y 25k

Denote by X the subspace of X generated by the elements . It is easy to see
that ¥ = {¢;} is a democratic basis in Xo. Moreover, it is superdemocratic:

for any ky,..., k&, and for any choice of signs,
m

3.2) vm < Z:i:@,bkj < 2v/m.
J=1

Indeed, we have

Z iwk,- = \/’I%,
Jj=1

I3

m
<Y 1/Vi<2y/m,
1 =1

Z e,
7=1

znd (3.2) follows. However, ¥ is not an unconditional basis since for m > 2

> be/VE
k=1

>3 " 1/k < logm,
k=1 :

m

Z(—l)kd)k/\/l; =< y/log m.
k=1

3.4. A quasi-greedy basis is not necessarily an uncondi-
tional basis

It follows from the definition of greedy basis (see (1.1)) that the inequality
(3.3) IGn (£, %, p)Il < (G + 1)||£]]

holds for all m and all f ¢ X, with some p € D(f).

Definition 3.2. We say that a basis ¥ is quasi-greedy if there exists a
constant Cg such that for any f € X and any finite set of indices A, having
the property

(3.4 inlex(f)] >
(3.4) lkllelll\llck(f)l_llgl&xlck(f)la
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we have

(3.5) ISACH O =11 ex(F)vell < Call£1]-

keA

It is clear that for elements f, with a unique decreasing rearrangement
of coefficients (#D(f) = 1), the inequalities (3.3) and (3.5) are equivalent.
Modifying slightly the coefficients and using the continuity argument we get
that (3.3) and (3.5) are equivalent. '

We shall prove now that the basis ¥ constructed in the previous subsection
3.3 is a quasi-greedy basis. Combining this with the result from 3.3 that ¥ is
not unconditional we get the required statement of this subsection.

Assume || f|| = 1. Then by the definition of || - || we have

(3.6) S le(NIE < 1
k=1
and for any M,
M
(3.7) 1> e(NHET? <1
k=1

It is clear that for any A we have

(3:8) 1SA(F, )i, < 1 flls, < 1.
We estimate now [|Sa(f, ¥)||;. Let A be any set satisfying (3.4). Denote
@ = minex(f)]
If o =0, we get SA(f,¥) = f and (3.5) holds. Let @ > 0. For any N, set
A*(N):={keA : k>N}, AT(N):={keA : Ek<N}
We have
Yo a2 (Y la(HPRHY k323

kEA+(N) kEA+(N) kSN
(3.9)

< NS el e D) P < (W),
keA+(N)

Choose N, := [a™?] + 1. Then for any M < N, we have by (3.7) that



S.V. KoNYAGIN AND V. N. TEMLYAKOV 375

M
Y aOE < 1Y (DR
kEA— (M) k=1
(3.10) +1Y e

kgA— (M),k<M

M
< 1+a) k'P< 1+2aM'? « 1.
k=1

For M > N, we get using (3.9) and (3.10)
| Z ce(HE? < | z cx(HEYV + Z lex(F)IE™Y2 < 1.

keA—(M) keA—(Na) keAT(Na)
Thus
1Sa(F, )l £ C,
what completes the proof. a

The above example and Theorem 1 show that a quasi-greedy basis is not
necessarily a greedy basis.

3.5. Some more relations

It follows directly from the definitions of unconditional basis and quasi-
greedy basis that an unconditional basis is always a quasi-greedy basis. This
and 3.1 show that quasi-greedy basis is not necessarily a democratic basis.

3.6. Symmetric bases

We say that two systems {2,}32; and {y,}52, of a Banach space X are
X -equivalent if there are two positive constants C; and C such that for any
finite sev A of indices and any numbers ak, k € A, we have

Cill Y araill < 1Y aryell < Call Y anzill.
keh keh k€A

Definition 3.3. A basis {z,}3%, of a Banach space X is said to be
symmetric if, for any permutation p of the positive integers, {2y oz is
X-equivalent to {z,}32;.



376 GREEDY APPROXIMATION IN BANACH SPACES

Proposition 3.2. 4 symmetric basis is a greedy basis.

" Proof. It is well-known ([LT]) that every symmetric basis is also uncon-
~ditional. It follows directly from the definition that every symmetric basis is
also democratic. Thus Theorem 1 implies Proposition 3.2. a

The following statement and Theorem A show that a greedy basis is not
necessarily a symmetric basis. Thus the greedy bases are somewhere in be-
tween of unconditional bases and symmetric bases.

Proposition 3.3. The univariate Haar basis H,, is not a symmetric basis
Jor L,(0,1) if p # 2.

Proof. This is known and follows for instance in the case of 1 < p < oo
from the estimate

m  2ntl
122 > 2P, < ml/?
n=0 k=2n41

which can be obtained by the Littlewood — Paley theorem (see [KT, Ch.3,
5.3]) and from the simple observation that for any system {HF}rean with
disjoint supports we have

132 cxBRlly = (3 lewl?) 7.

keA keA

4. Applications to function spaces

4.1. Trigonometric subsystems

Consider first the case when X C Ly(T) and ¥ is a subsystem of the
trigonometric system. Let A/ := {nk}32, be a sequence of different integers.

Denote .
Ly(T,N') := spam( {52 |

where the closure is taken in Ly. We discuss the question: for which A" the
system T(N) := {e™= p, ¢ N} is a greedy basis for L,(T,N) ? By
Theorem 1 it should be an unconditional basis for Ly(T,N). Thus, we get
from Khinchin’s inequality (see [KS, Ch.2, S.2]) that for

f(z) =) f(ni)e™=
k=1
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we have

(o]
4.1) 1z, = Q1 f ()P = [Iflle,s 1< p < oo
k=1

is clear that (4.1) implies that 7(A) is a democratic basis for L,(T,N).
hus. a basis T7(N) is a greedy basis for L,(T,N) if and only if (4.1) holds
for each f € L,(T,N).

In the case of uniform norm (p = c0) we get from Theorem 1 that 7(N)
should be an unconditional basis for Lo (T,N). This implies in turn that we
should have

[ Flloo < D 1f (i)l for all  f € Loo(T,N).
k

-

Subsequences AV with the property (4.2) are called the Sidon sets (see [K]). It is
“lear that (4.2) implies that 7(N) is a greedy basis for Lo (T, N). Therefore,
T(\7) is a greedy basis for Lo (T, N) if and only if A is a Sidon’s set.

4.2.  Uniformly bounded systems

Let ¥ := {¢Y(2)}72, be a uniformly bounded on  system of real functions
where () is a bounded domain in R%. Assume that |||, := ¥kl @ = 1,
£ =1.2,..., for some 1 < p < 0o and denote

X(V, L,) = span{yr iy,
where the closure is taken in L,(f).

Proposition 4.1. A system V is a greedy basts for X(V, L,) if and only
f it 1s an unconditional basis for X (¥, L,).

Proof. Theorem 1 implies that a greedy basis is always an unconditional
basis. It remains to prove that a ¥ satisfying the above assumptions is a
greedy basis. Theorem 1 shows that it is sufficient to prove that ¥ is a
democratic basis. We remark first that our assumptions ||¢k|l, = 1 and
klloo £ M imply that ||¢k|l2 > M7 > 0. For a function

F=2exl)n
i

consider the square function

S(f) = (Y en())9i) 2
k
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Then

(4.3) 1S(F)lloo < MY en(H)HM2,
k

and for all 1 < p < oo,

(4.4) ISPl < 1Q17PM S er( £
k

Using the fact that ¥ is an unconditional basis we get by Khinchin’s inequality
(see [KS, Ch.2, S.2])

(4.5) 17l < ISCH)l-

We prove now that

(4.6) ISl = (e 5D

k

Indeed, the upper estimate follows from (4.3) and (4.4). The lower estimate
in the case p > 2 follows from the inequalities

(4.7) 1S > 1SNl > S el HH2.

k

In the case 1 < p < 2 the lower estimate follows from (4.3), (4.7) and the
inequality
ISCONZ < ISHIEPIS OIS

The relations (4.5) and (4.6) imply that ¥ is a democratic basis. a
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