Discretization and related questions

Spherical designs and other optimal configurations

Andriy Bondarenko

Norwegian University of Science and Technology

12 March 2021

Let S^d be the unit sphere in \mathbb{R}^{d+1} with normalized Lebesgue measure $d\mu_d$. A set of points $x_1, \ldots, x_N \in S^d$ is called a *spherical t*-design if

$$\int_{S^d} P(x) d\mu_d(x) = \frac{1}{N} \sum_{i=1}^N P(x_i)$$

for all algebraic polynomials in d + 1 variables and of total degree at most t.

What is the minimal number of points in a spherical *t*-design in S^d ?

イロト イヨト イヨト イヨト

臣

Bernstein problem on equal weight quadrature:

What is the minimal number N = N(t) such that for some fixed collection of points $x_1, \ldots, x_N \in [-1, 1]$ the equation

$$\frac{1}{2}\int_{-1}^{1}P(x)dx = \frac{1}{N}\sum_{i=1}^{N}P(x_{i})$$

holds for all algebraic polynomials of degree at most t?

Bernstein problem on equal weight quadrature:

What is the minimal number N = N(t) such that for some fixed collection of points $x_1, \ldots, x_N \in [-1, 1]$ the equation

$$\frac{1}{2}\int_{-1}^{1}P(x)dx = \frac{1}{N}\sum_{i=1}^{N}P(x_{i})$$

holds for all algebraic polynomials of degree at most t? Answer: $N = O(t^2)$. Bernstein problem on equal weight quadrature:

What is the minimal number N = N(t) such that for some fixed collection of points $x_1, \ldots, x_N \in [-1, 1]$ the equation

$$\frac{1}{2}\int_{-1}^{1}P(x)dx = \frac{1}{N}\sum_{i=1}^{N}P(x_{i})$$

holds for all algebraic polynomials of degree at most t? **Answer:** $N = O(t^2)$. **Claim:** Projection of a spherical *t*-design in S^2 to any diameter is above mentioned quadrature.

5-design consisting of 12 points (icosahedron)

6-design consisting of 32 points

For each $t \in \mathbb{N}$ denote by N(d, t) the minimal number of points in a spherical *t*-design on S^d . The following lower bounds are proved by Delsarte, Goethals and Seidel in 1977:

$$egin{aligned} \mathcal{N}(d,t) &\geq inom{d+k}{d} + inom{d+k-1}{d}, \ t=2k, \ \mathcal{N}(d,t) &\geq 2inom{d+k}{d}, \ t=2k+1. \end{aligned}$$

For each $t \in \mathbb{N}$ denote by N(d, t) the minimal number of points in a spherical *t*-design on S^d . The following lower bounds are proved by Delsarte, Goethals and Seidel in 1977:

$$egin{aligned} \mathcal{N}(d,t) &\geq inom{d+k}{d} + inom{d+k-1}{d}, \ t = 2k, \ \mathcal{N}(d,t) &\geq 2inom{d+k}{d}, \ t = 2k+1. \end{aligned}$$

Yudin (1997) improved this result for most pairs (d, t).

For each $t \in \mathbb{N}$ denote by N(d, t) the minimal number of points in a spherical *t*-design on S^d . The following lower bounds are proved by Delsarte, Goethals and Seidel in 1977:

$$egin{aligned} \mathcal{N}(d,t) &\geq inom{d+k}{d} + inom{d+k-1}{d}, \ t = 2k, \ \mathcal{N}(d,t) &\geq 2inom{d+k}{d}, \ t = 2k+1. \end{aligned}$$

Yudin (1997) improved this result for most pairs (d, t). Corollary.

$$N(d,t) \geq c_d t^d$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト

Designs attaining these bounds are called *tight*.

dimension	\$ of points	strength	comment
1	t	t-1	t-gon
t	t+2	2	simplex
t	2t+2	3	octachedron
2	12	5	icosahedron
5	27	4	Shläfli
6	56	5	kissing
7	240	7	E_8 roots
21	275	4	kissing
22	552	5	equiang. lines
22	4600	7	kissing
23	196560	11	Leech lattice

Table of known tight designs.

Designs attaining these bounds are called *tight*.

dimension	\$ of points	strength	comment
1	t	t-1	t-gon
t	t+2	2	simplex
t	2t+2	3	octachedron
2	12	5	icosahedron
5	27	4	Shläfli
6	56	5	kissing
7	240	7	E_8 roots
21	275	4	kissing
22	552	5	equiang. lines
22	4600	7	kissing
23	196560	11	Leech lattice

Table of known tight designs.

Tight designs with $d \ge 2$ may exist only for t = 4, 5, 7 or 11 (Bannai and Damerell).

$X = \{ (\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}), (\pm 1, 0, 0, 0), \dots, (0, 0, 0, \pm 1) \}.$ X is a spherical 5-design on S³, so $N(3, 5) \le 24$.

▲御▶ ▲ 理▶ ▲ 理▶

臣

$$\begin{split} &X = \{(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}), (\pm 1, 0, 0, 0), \dots, (0, 0, 0, \pm 1)\}.\\ &X \text{ is a spherical 5-design on } S^3, \text{ so } N(3,5) \leq 24.\\ &\textbf{Conjecture: } N(3,5) = 24.\\ &\text{ It is only know that } N(3,5) \geq 22. \end{split}$$

(4回) (4回) (4回)

æ

 $X = \{(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}), (\pm 1, 0, 0, 0), \dots, (0, 0, 0, \pm 1)\}.$ X is a spherical 5-design on S^3 , so $N(3, 5) \le 24$. **Conjecture:** N(3, 5) = 24. It is only know that $N(3, 5) \ge 22$. There is 3-parameter family of 5-designs on S^3 consisting of 24 points.

(Cohn, Conway, Elkies, Kumar' 07)

< ロ > < 同 > < 三 > < 三 >

(4回) (4回) (4回)

臣

First Seymour and Zaslavsky (1984) have proved that spherical design exists for all $d, t \in \mathbb{N}$.

< 回 > < 注 > < 注 >

First Seymour and Zaslavsky (1984) have proved that spherical design exists for all $d, t \in \mathbb{N}$.

Then, Wagner (1991) and Bajnok (1992) independently have proved that $N(d, t) \leq C_d t^{Cd^4}$ and $N(d, t) \leq C_d t^{Cd^3}$ respectively.

First Seymour and Zaslavsky (1984) have proved that spherical design exists for all $d, t \in \mathbb{N}$.

Then, Wagner (1991) and Bajnok (1992) independently have proved that $N(d, t) \leq C_d t^{Cd^4}$ and $N(d, t) \leq C_d t^{Cd^3}$ respectively.

Korevaar and Meyers (1993) improved this inequality to $N(d,t) \leq C_d t^{(d^2+d)/2}$.

・ 同 ト ・ 三 ト ・ 三 ト

First Seymour and Zaslavsky (1984) have proved that spherical design exists for all $d, t \in \mathbb{N}$.

Then, Wagner (1991) and Bajnok (1992) independently have proved that $N(d, t) \leq C_d t^{Cd^4}$ and $N(d, t) \leq C_d t^{Cd^3}$ respectively.

Korevaar and Meyers (1993) improved this inequality to $N(d, t) \leq C_d t^{(d^2+d)/2}$.

Conjecture. $N(d, t) \leq C_d t^d$.

We have proved the following

Theorem 1. (B., Radchenko, Viazovska) For each $N \ge C_d t^d$ there exists a spherical t-design in S^d consisting of N points, where C_d is large enough.

Step 1

Find a good starting configuration of N points on S^d which is "almost" a *t*-design.

토 🕨 🗉 토

Step 1

Find a good starting configuration of N points on S^d which is "almost" a *t*-design.

Step 2

Using topological degree theory prove that we can slightly move these points so that they become a t-design.

The space of polynomials

Let \mathcal{P}_t be the vector space of polynomials P of degree $\leq t$ on S^d such that

$$\int_{S^d} P(x) d\mu_d(x) = 0.$$

We can define an inner product on \mathcal{P}_t by

$$\langle P, Q \rangle := \int_{S^d} P(x)Q(x)d\mu_d(x).$$

The space of polynomials

Let \mathcal{P}_t be the vector space of polynomials P of degree $\leq t$ on S^d such that

$$\int_{S^d} P(x) d\mu_d(x) = 0.$$

We can define an inner product on \mathcal{P}_t by

$$\langle P, Q \rangle := \int_{S^d} P(x)Q(x)d\mu_d(x).$$

For each point $x \in S^d$ there exists a unique polynomial $G_x \in \mathcal{P}_t$ such that

$$\langle {\it G}_x, {\it Q}
angle = {\it Q}(x) \; \; {
m for \; all } \; {\it Q} \in {\cal P}_t.$$

Then, the set of points $x_1, \ldots, x_N \in S^d$ forms a spherical design if and only if

$$G_{x_1}+\ldots+G_{x_N}=0.$$

(4回) (4回) (日)

臣

The partition \mathcal{R} is called *area-regular* if $\mu(R_i) = 1/N$, for all $i = \overline{1, \dots, N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The partition \mathcal{R} is called *area-regular* if $\mu(R_i) = 1/N$, for all $i = \overline{1, \dots, N}$.

The partition norm for \mathcal{R} is defined by $\|\mathcal{R}\| := \max_{R \in \mathcal{R}} \operatorname{diam} R$.

イロン イヨン イヨン ・ ヨン

The partition \mathcal{R} is called *area-regular* if $\mu(R_i) = 1/N$, for all $i = \overline{1, \dots, N}$.

The partition norm for \mathcal{R} is defined by $\|\mathcal{R}\| := \max_{R \in \mathcal{R}} \operatorname{diam} R$. **Theorem KS.** (Kuijlaars, Saff ' 98) For each $N \in \mathbb{N}$ there exists an area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ such that $\|\mathcal{R}\| \le c_d N^{-1/d}$ for some constant c_d .

Marcinkiewich-Zygmund inequality on the sphere

Theorem MNW. (Mhaskar, Narcowich, Ward '00) There exist constants r_d and N_d such that for each area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with $||\mathcal{R}|| < \frac{r_d}{m}$, each collection of points $x_i \in R_i$, $i = \overline{1, \ldots, N}$ and each algebraic polynomial P of total degree $m > N_d$ the following inequality

$$\frac{1}{2}\int_{S^d} |P(x)| dx < \frac{1}{N}\sum_{i=1}^N |P(x_i)| < \frac{3}{2}\int_{S^d} |P(x)| dx$$

holds.

Marcinkiewich-Zygmund inequality on the sphere

Theorem MNW. (Mhaskar, Narcowich, Ward '00) There exist constants r_d and N_d such that for each area-regular partition $\mathcal{R} = \{R_1, \ldots, R_N\}$ with $||\mathcal{R}|| < \frac{r_d}{m}$, each collection of points $x_i \in R_i$, $i = \overline{1, \ldots, N}$ and each algebraic polynomial P of total degree $m > N_d$ the following inequality

$$\frac{1}{2}\int_{S^d} |P(x)| dx < \frac{1}{N}\sum_{i=1}^N |P(x_i)| < \frac{3}{2}\int_{S^d} |P(x)| dx$$

holds.

Corollary.

$$\frac{1}{3\sqrt{d}}\int_{S^d}|\nabla P(x)|d\mu_d(x)\leq \frac{1}{N}\sum_{i=1}^N|\nabla P(x_i)|\leq 3\sqrt{d}\int_{S^d}|\nabla P(x)|d\mu_d(x).$$

Theorem B. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous mapping and Ω be an open bounded subset with the boundary $\partial\Omega$ such that $0 \in \Omega \subset \mathbb{R}^n$. If (x, f(x)) > 0 for all $x \in \partial\Omega$, then there exists $x \in \Omega$ satisfying f(x) = 0.

< A ≥ < B

Consider the following open subset of \mathcal{P}_t

$$\Omega := \left\{ P \in \mathcal{P}_t \left| \int_{S^d} |\nabla P(x)| d\mu_d(x) < 1 \right\}.$$

Lemma If $N > C_d t^d$ then there are continuous mappings $x_i : \mathcal{P}_t \to S^d$ such that for all $P \in \partial \Omega$,

$$\frac{1}{N}\sum_{i=1}^{N}P(x_i(P))>0.$$

< (17) > < (17) > >

Proof of Theorem 1

Let $f : \mathcal{P}_t \to \mathcal{P}_t$ be defined by

$$f(P) := G_{x_1(P)} + \ldots + G_{x_N(P)}.$$

Clearly

$$(P, f(P)) = \sum_{i=1}^{N} P(x_i(P))$$

for each $P \in \mathcal{P}_t$.

Theorem B applied for the mapping f, the vector space \mathcal{P}_t , and the subset Ω gives us the existence of a polynomial $P \in \mathcal{P}_t$ such that f(P) = 0. Hence, the components of $F(P) = (x_1(P), ..., x_N(P))$ form a spherical *t*-design in S^d consisting of N points.

Lemma is "visible".

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

æ

Lemma is "visible". To prove it we use a result on area-regular partitions (Kuijlaars, Saff) and the Marcinkiewicz-Zygmund inequality for the sphere (Mhaskar, Narcowich, and Ward)

There exists well separated spherical *t*-designs in S^d of cardinality $O(t^d)$.

There exists well separated spherical *t*-designs in S^d of cardinality $O(t^d)$.

Theorem 2. For each $N \ge C_d t^d$ there exists a spherical t-design in S^d consisting of N points, such that $dist(x_i, x_j) \ge \lambda_d N^{-1/d}$ for $i \ne j$, where C_d and λ_d depending only on d.

Conjecture:

$${\it N}(2,t)\leq (rac{1}{2}+o(1))t^2, \hspace{1em} ext{as} \hspace{1em} t
ightarrow\infty.$$

<ロ> <同> <同> < 同> < 同>

æ

Conjecture:

$$N(2,t)\leq (rac{1}{2}+o(1))t^2, \hspace{1em} ext{as} \hspace{1em} t
ightarrow\infty.$$

Motivation: dim $P_t = t^2 + 2t$. S^2 has dimension 2.

▲ 御 ▶ ▲ 臣 ▶

토 🕨 🗉 토

1. (D. Kane, 2015) $N(d, t) \leq dim(\mathcal{P}_{d,t})^2$.

・日・ ・ ヨ・ ・ ヨ・

臣

1. (D. Kane, 2015) $N(d, t) \leq dim(\mathcal{P}_{d,t})^2$.

2. (Ujué Etayo, Jordi Marzo, Joaquim Ortega-Cerdà, 2018) Asymptotically optimal designs on compact algebraic manifolds

THANK YOU!

Andriy Bondarenko Spherical designs

<ロ> <四> <四> <三</td>