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Definition

Let Sd be the unit sphere in Rd+1 with normalized Lebesgue
measure dµd . A set of points x1, . . . , xN ∈ Sd is called a spherical
t-design if ∫

Sd

P(x)dµd(x) =
1

N

N∑
i=1

P(xi )

for all algebraic polynomials in d + 1 variables and of total degree
at most t.
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Main question

What is the minimal number of points in a spherical t-design in
Sd?
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Motivation

Bernstein problem on equal weight quadrature:
What is the minimal number N = N(t) such that for some fixed
collection of points x1, . . . , xN ∈ [−1, 1] the equation

1

2

∫ 1

−1
P(x)dx =

1

N

N∑
i=1

P(xi )

holds for all algebraic polynomials of degree at most t?

Answer: N = O(t2).
Claim: Projection of a spherical t-design in S2 to any diameter is
above mentioned quadrature.
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5-design consisting of 12 points (icosahedron)
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6-design consisting of 32 points
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Lower bounds

For each t ∈ N denote by N(d , t) the minimal number of points in
a spherical t-design on Sd . The following lower bounds are proved
by Delsarte, Goethals and Seidel in 1977:

N(d , t) ≥
(
d + k

d

)
+

(
d + k − 1

d

)
, t = 2k,

N(d , t) ≥ 2

(
d + k

d

)
, t = 2k + 1.

Yudin (1997) improved this result for most pairs (d , t).
Corollary.

N(d , t) ≥ cd t
d .
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Tight designs

Designs attaining these bounds are called tight.

Table of known tight designs.

dimension ] of points strength comment
1 t t-1 t-gon
t t+2 2 simplex
t 2t+2 3 octachedron
2 12 5 icosahedron
5 27 4 Shläfli
6 56 5 kissing
7 240 7 E8 roots

21 275 4 kissing
22 552 5 equiang. lines
22 4600 7 kissing
23 196560 11 Leech lattice

Tight designs with d ≥ 2 may exist only for t = 4, 5, 7 or 11
(Bannai and Damerell).
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Example

X = {(±1
2 ,±

1
2 ,±

1
2 ,±

1
2), (±1, 0, 0, 0), . . . , (0, 0, 0,±1)}.

X is a spherical 5-design on S3, so N(3, 5) ≤ 24.

Conjecture: N(3, 5) = 24.
It is only know that N(3, 5) ≥ 22.
There is 3-parameter family of 5-designs on S3 consisting of 24
points.
(Cohn, Conway, Elkies, Kumar’ 07)
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Asymptotic upper bounds on N(d , t) for fixed d and
t →∞.

First Seymour and Zaslavsky (1984) have proved that spherical
design exists for all d ,t ∈ N.

Then, Wagner (1991) and Bajnok (1992) independently have
proved that N(d , t) ≤ Cd t

Cd4
and N(d , t) ≤ Cd t

Cd3
respectively.

Korevaar and Meyers (1993) improved this inequality to
N(d , t) ≤ Cd t

(d2+d)/2.

Conjecture. N(d , t) ≤ Cd t
d .

Andriy Bondarenko Spherical designs



Asymptotic upper bounds on N(d , t) for fixed d and
t →∞.

First Seymour and Zaslavsky (1984) have proved that spherical
design exists for all d ,t ∈ N.

Then, Wagner (1991) and Bajnok (1992) independently have
proved that N(d , t) ≤ Cd t

Cd4
and N(d , t) ≤ Cd t

Cd3
respectively.

Korevaar and Meyers (1993) improved this inequality to
N(d , t) ≤ Cd t

(d2+d)/2.

Conjecture. N(d , t) ≤ Cd t
d .

Andriy Bondarenko Spherical designs



Asymptotic upper bounds on N(d , t) for fixed d and
t →∞.

First Seymour and Zaslavsky (1984) have proved that spherical
design exists for all d ,t ∈ N.

Then, Wagner (1991) and Bajnok (1992) independently have
proved that N(d , t) ≤ Cd t

Cd4
and N(d , t) ≤ Cd t

Cd3
respectively.

Korevaar and Meyers (1993) improved this inequality to
N(d , t) ≤ Cd t

(d2+d)/2.

Conjecture. N(d , t) ≤ Cd t
d .

Andriy Bondarenko Spherical designs



Asymptotic upper bounds on N(d , t) for fixed d and
t →∞.

First Seymour and Zaslavsky (1984) have proved that spherical
design exists for all d ,t ∈ N.

Then, Wagner (1991) and Bajnok (1992) independently have
proved that N(d , t) ≤ Cd t

Cd4
and N(d , t) ≤ Cd t

Cd3
respectively.

Korevaar and Meyers (1993) improved this inequality to
N(d , t) ≤ Cd t

(d2+d)/2.

Conjecture. N(d , t) ≤ Cd t
d .

Andriy Bondarenko Spherical designs



Asymptotic upper bounds on N(d , t) for fixed d and
t →∞.

First Seymour and Zaslavsky (1984) have proved that spherical
design exists for all d ,t ∈ N.

Then, Wagner (1991) and Bajnok (1992) independently have
proved that N(d , t) ≤ Cd t

Cd4
and N(d , t) ≤ Cd t

Cd3
respectively.

Korevaar and Meyers (1993) improved this inequality to
N(d , t) ≤ Cd t

(d2+d)/2.

Conjecture. N(d , t) ≤ Cd t
d .

Andriy Bondarenko Spherical designs



Main result

We have proved the following

Theorem 1. (B., Radchenko, Viazovska) For each N ≥ Cd t
d

there exists a spherical t-design in Sd consisting of N points,
where Cd is large enough.
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Idea of the proof

Step 1

Find a good starting configuration of N points on Sd which is
“almost” a t-design.

Step 2

Using topological degree theory prove that we can slightly move
these points so that they become a t-design.
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The space of polynomials

Let Pt be the vector space of polynomials P of degree ≤ t on Sd

such that ∫
Sd

P(x)dµd(x) = 0.

We can define an inner product on Pt by

〈P,Q〉 :=

∫
Sd

P(x)Q(x)dµd(x).

For each point x ∈ Sd there exists a unique polynomial Gx ∈ Pt
such that

〈Gx ,Q〉 = Q(x) for all Q ∈ Pt .

Then, the set of points x1, . . . , xN ∈ Sd forms a spherical design if
and only if

Gx1 + . . .+ GxN = 0.

Andriy Bondarenko Spherical designs



The space of polynomials

Let Pt be the vector space of polynomials P of degree ≤ t on Sd

such that ∫
Sd

P(x)dµd(x) = 0.

We can define an inner product on Pt by

〈P,Q〉 :=

∫
Sd

P(x)Q(x)dµd(x).

For each point x ∈ Sd there exists a unique polynomial Gx ∈ Pt
such that

〈Gx ,Q〉 = Q(x) for all Q ∈ Pt .

Then, the set of points x1, . . . , xN ∈ Sd forms a spherical design if
and only if

Gx1 + . . .+ GxN = 0.

Andriy Bondarenko Spherical designs



Area-regular partitions

Let R = {R1, . . . ,RN} be a finite collection of closed,
non-overlapping (i.e., having no common interior points) regions
Ri ⊂ Sd such that ∪Ni=1Ri = Sd .

The partition R is called area-regular if µ(Ri ) = 1/N, for all
i = 1, . . . ,N.

The partition norm for R is defined by ‖R‖ := maxR∈R diamR.

Theorem KS. (Kuijlaars, Saff ’ 98)
For each N ∈ N there exists an area-regular partition
R = {R1, . . . ,RN} such that ‖R‖ ≤ cdN

−1/d for some constant
cd .
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Marcinkiewich-Zygmund inequality on the sphere

Theorem MNW. (Mhaskar, Narcowich, Ward ’00) There exist
constants rd and Nd such that for each area-regular partition
R = {R1, . . . ,RN} with ‖R‖ < rd

m , each collection of points
xi ∈ Ri , i = 1, . . . ,N and each algebraic polynomial P of total
degree m > Nd the following inequality

1

2

∫
Sd

|P(x)|dx < 1

N

N∑
i=1

|P(xi )| <
3

2

∫
Sd

|P(x)|dx

holds.

Corollary.

1

3
√
d

∫
Sd

|∇P(x)|dµd(x) ≤ 1

N

N∑
i=1

|∇P(xi )| ≤ 3
√
d

∫
Sd

|∇P(x)|dµd(x).
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Topological theorem

Theorem B. Let f : Rn → Rn be a continuous mapping and Ω be
an open bounded subset with the boundary ∂Ω such that
0 ∈ Ω ⊂ Rn. If (x , f (x)) > 0 for all x ∈ ∂Ω, then there exists
x ∈ Ω satisfying f (x) = 0.
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The key lemma

Consider the following open subset of Pt

Ω :=

{
P ∈ Pt

∣∣∣∣ ∫
Sd

|∇P(x)|dµd(x) < 1

}
.

Lemma If N > Cd t
d then there are continuous mappings

xi : Pt → Sd such that for all P ∈ ∂Ω,

1

N

N∑
i=1

P(xi (P)) > 0.
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Proof of Theorem 1

Let f : Pt → Pt be defined by

f (P) := Gx1(P) + . . .+ GxN(P).

Clearly

(P, f (P)) =
N∑
i=1

P(xi (P))

for each P ∈ Pt .

Theorem B applied for the mapping f , the vector space Pt , and the
subset Ω gives us the existence of a polynomial P ∈ Pt such that
f (P) = 0. Hence, the components of F (P) = (x1(P), ..., xN(P))
form a spherical t-design in Sd consisting of N points.
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How to prove Lemma?

Lemma is “visible”.

To prove it we use a result on area-regular
partitions (Kuijlaars, Saff) and the Marcinkiewicz-Zygmund
inequality for the sphere (Mhaskar, Narcowich, and Ward)
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Well-separated spherical designs

There exists well separated spherical t-designs in Sd of cardinality
O(td).

Theorem 2. For each N ≥ Cd t
d there exists a spherical t-design

in Sd consisting of N points, such that dist(xi , xj) ≥ λdN−1/d for
i 6= j , where Cd and λd depending only on d.
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Hardin-Sloane conjecture

Conjecture:

N(2, t) ≤ (
1

2
+ o(1))t2, as t →∞.

Motivation: dim Pt = t2 + 2t. S2 has dimension 2.
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Other Generalizations

1. (D. Kane, 2015) N(d , t) ≤ dim(Pd ,t)2.

2. (Ujué Etayo, Jordi Marzo, Joaquim Ortega-Cerdà, 2018)
Asymptotically optimal designs on compact algebraic manifolds
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THANK YOU!
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