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1. Introduction

In the past 15-20 years the problem of discretization of uniform and Lq norms in various finite dimensional
spaces has been widely investigated. In case of Lq, 1 ≤ q < ∞ norms this problem is usually referred to as the
Marcinkiewicz-Zygmund type problem, for uniform norm the terms norming sets or optimal meshes are used in the
literature.

First discretization result for uniform norm was given by S.N. Brernstein in 1932:
For any trigonometric polynomial tn of degree ≤ n and any 0 = x0 < x1 < ... < xN < xN+1 = 2π with

xj+1 − xj ≤ 2
√
τ

n , ∀j, 0 < τ < 2 we have

max
x∈[0,2π]

|tn(x)| ≤ (1 + τ) max
0≤j≤N

|tn(xj)|. (1)

Thus the uniform norm of trigonometric polynomials of degree ≤ n can be discretized with accuracy τ using
N ∼ n√

τ
nodes. A standard substitution leads to an extension of (1) for algebraic polynomials with nodes astisfying

arccosxj+1 − arccosxj ≤ 2
√
τ

n , ∀j.

First result on the discretization of the Lq, 1 ≤ q < ∞ norm is due to Marcinkiewicz and Zygmund, 1937:
For any univariate trigonometric polynomial tn of degree at most n and every 1 < q < ∞∫

|tn|q ∼ 1

n

2n∑
s=0

∣∣∣∣tn ( 2πs

2n+ 1

)∣∣∣∣q (2)

Important: the constants involved depend only on q! Number of nodes is 2n+ 1.

Discretization of the Lq norms is widely applied in the study of the convergence of Fourier series, Lagrange and
Hermite interpolation, positive quadrature formulas, scattered data interpolation, etc. Various generalizations were
given for weighted Lq norms, multivariate polynomial on sphere and ball and general convex domains, exponential
polynomials.

In terms of the methods used for the discretization several general approaches can be mentioned:

1) Functional analytic methods
2) Probabilistic methods
3) Bernstein-Markov type inequalities

The Bernstein-Markov method based on derivative estimates for discretized spaces always yields explicit dis-
cretization nodes. The main goal of the present talk is to give a survey of recent discretization results based on
some new Bernstein-Markov type inequalities. First we will give an overview of corresponding Bernstein-Markov
type inequalities. Then we will show how these Bernstein-Markov type inequalities yield new discretization results.
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2. Bernstein and Markov type inequalities for derivatives of polynomials and exponential sums

2.1 Bernstein-Markov type inequalities for univariate polynomials. Markov inequality for univariate
polynomials: For any algebraic polynomial q of degree ≤ n

∥q′∥Lp
w[−1,1] ≤ cpn

2∥q∥Lp
w[−1,1], p ≥ 1. (3)

Here Lp
w stands for the Lp norm with a doubling weight w. (Mastroianni and Totik)

For trigonometric polynomials t of degree ≤ n we have Bernstein inequality

∥t′∥Lp
w[−π,π] ≤ cpn∥t∥Lp

w[−π,π], p ≥ 1, (4)

The constants cp depend only on p. Note: the order n2 of derivatives in (3) in algebraic case reduces to n in
trigonometric case (4). This fact makes Bernstein inequalities much more useful for obtaining discretization nodes
of asymptotically optimal cardinality. (4) can be rewritten as

∥
√

1− x2q′∥Lp
w[−1,1] ≤ cpn∥q∥Lp

w[−1,1], p > 0 (5)

with q being an algebraic polynomials of degree n. Thus introduction of a weight
√
1− x2 into the derivative norms

reduces their size by a factor of n. This phenomena and its numerous extensions play a significant role in various
discretization results.

We can unify above into a single Bernstein-Markov type inequality

∥(a
n
+

√
a2 − x2)q′∥Lp

w[−a,a] ≤ cpn∥q∥Lp
w[−a,a], p ≥ 1. (6)

(It also holds for any trigonometric polynomial q(t) of degree at most n and 0 < a < 1
2 , Lubinsky.)

2.2 Bernstein-Markov type inequalities for multivariate polynomials. Consider the space P d
n of real

algebraic polynomials of d variables and degree at most n. The Bernstein-Markov type inequality (6) admits an
extension to the multivariate case for convex or more generally Lip1 domains K ⊂ Rd, d > 1. The quantity√
a2 − x2 in (6) which measures the distance to the boundary of the interval in case of a convex body K can be

replaced by the Hausdorff distance to the boundary hK(x) := infy∈BdK |x − y|, with BdK being the boundary of
the set. This leads to the estimate

∥
(
1

n
+
√

hK(x)

)
∂q∥Lp(K) ≤ cK,dn∥q∥Lp(K), q ∈ P d

n , 1 ≤ p ≤ ∞. (7)

where ∂q stands for the gradient of q.

Note: for cuspidal domains, for instance Lipγ, 0 < γ < 1 we must replace n by n
2
γ −1, and the distance to the

boundary is measured differently!

The size of derivatives on the boundary of the domain plays a crucial role in deriving discretization meshes of
asymptotically optimal cardinality. Therefore tangential Bernstein-Markov type inequalities are important.

Let K ⊂ Rd be a compact star like set that is 0 ∈ IntK and for every x ∈ K we have that [0,x) ⊂ IntK. Assume
that its Minkowski functional φK(x) := inf{α > 0 : x/α ∈ K} is continuously differentiable on Rd \ {0}. Let TK(x)
be the set of tangent unit vectors to K at x ∈ BdK. Then given 0 < α ≤ 1, we will say that the star like domain
K ⊂ Rd is C1+α if ∂φK ∈Lipα.
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For C1+α, 0 < α ≤ 1 star like domains K ⊂ Rd we have tangential Bernstein type inequality (A.K., 2013)

∥(1− φK(x))
1

1+α− 1
2Duq∥L∞(K) ≤ cKn∥q∥L∞(K), q ∈ P d

n , u ∈ TK(x). (8)

If α = 0, i.e. K is a C1 then we have
√
1− φK(x) in (8) which corresponds to

√
hK(x) in (7). On the other

hand when α > 0 the quantity (1−φK(x))
1

1+α− 1
2 which measures the distance to the boundary in (8) gives a slower

than ”square root” order of decrease to 0 at the boundary. This has significant effect on decreasing the cardinality
of discretization meshes.

Above tangential Bernstein type inequality requires certain smoothness of the domain. Now we present another
important tangential Bernstein type inequality which holds for algebraic polynomials on any convex body in K ⊂ R2

(A.K., 2019):
∥Duq∥L1(BdK) ≤ cKn∥q∥L∞(K), q ∈ P d

n , u ∈ TK(x) (9)

Note: the size of the tangential derivative of q ∈ P d
n in (9) is measured in the L1 norm on the boundary and

consequently no additional weight is needed in the norm of the derivative.

2.3 Bernstein-Markov type inequalities for exponential sums. First a nice Bernstein type estimate by
Borwein and Erdélyi: ∀q(t) =

∑
0≤j≤n cje

µjt, cj ∈ R with arbitrary real µj ∈ R

∥(1− x2)q′∥L∞[−1,1] ≤ (4n− 2)∥q∥L∞[−1,1]. (10)

Surprise: this bound is independent of the exponents µj ∈ R or their degree µ∗
n := max0≤j≤n |µj |.

Note: derivatives are measured with the weight 1− x2 and not
√
1− x2 as in the classical case.

A corresponding Markov type inequality states that for any q(t) =
∑

0≤j≤n cje
µjt, cj ∈ R with arbitrary separated

µj ∈ R, µj+1 − µj ≥ 1 of degree µ∗
n := max0≤j≤n |µj | we have

∥p′∥L∞[0,1] ≤ cnµ∗
n∥p∥L∞[0,1].

Markov type estimate for the derivatives of multivariate exponential sums on convex bodies (A.K. 2020):
K ⊂ Rd, d ≥ 1 is a convex body, rK the radius of the largest inscribed ball. Then for every exponential sum

g(w) =
∑

0≤j≤n

cje
⟨µj , w⟩, w, µj ∈ Rd, |µk − µj | ≥

δ

rK
, j ̸= k, 0 < δ ≤ 1

we have with µ∗
n := max0≤j≤n |µn| and some absolute constant c > 0

∥∂g∥L∞(K) ≤
cd3n3µ∗

n

δ
∥g∥L∞(K). (11)

Here only the degree µ∗
n := max0≤j≤n |µn| of the exponential sums, their dimension n and the separation parameter

δ is effecting the upper bound. This important fact leads to exponent independent discretization results.

Next we give an Lp analogue of the Borwein and Erdélyi bound. Let 1 ≤ p ≤ 2, 0 < δ < 1, n ∈ N. Then for any
distinct λ1, ..., λn ∈ R and any exponential sum q(x) =

∑
1≤j≤n cje

λjx, ∀cj ∈ R we have

∥(1− x2)q′∥Lp[−1+δ,1−δ] ≤ c

(
ln

2

δ

) 1
p

n
1
p+1∥q∥Lp[−1,1]. (12)
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For exponential sums with nonnegative coefficients a much stronger dimension and exponent independent Bern-
stein type upper bound can be verified (A.K., 2021):

For any distinct real numbers λj ∈ R, 1 ≤ j ≤ n and arbitrary exponential sum q(x) =
∑

1≤j≤n aje
λjx with

nonnegative coefficients aj ≥ 0

∥(1− x2)q′∥Lp[−1,1] ≤ 4∥q∥Lp[−1,1], ∀p, n ∈ N. (13)

3. Discretization of uniform norms of polynomials and exponential sums

Now we will illustrate how Bernstein-Markov type inequalities are used in discretization of uniform norms of
polynomials and exponential sums.

3.1 Discretization of uniform norms of polynomials. We define norming sets YN ⊂ K of cardinality
CardYN = N for a compact set K ⊂ Rd as sets for which ∃cK with

||p||L∞(K) ≤ cK ||p||L∞(YN ), ∀p ∈ P d
n . (14)

Main goal: find discrete sets of possibly best asymptotic cardinality.

Since dimP d
n =

(
n+d
n

)
we clearly must have N >

(
n+d
n

)
∼ nd in order for (14) to hold.

Optimal meshes: discrete sets of CardYN ∼ nd satisfying (14).

Finding exact geometric properties characterizing sets with optimal meshes appears to be a rather difficult
problem. Using multivariate Bernstein-Markov type inequalities it was shown that C2 star like domains and convex
polytopes in Rd possess optimal meshes.

It was also conjectured that any convex body in Rd possesses an optimal mesh.

Tangential Bernstein type inequalities are especially useful in the study of optimal meshes. In particular the
tangential Bernstein inequality (8) leads to the existence of optimal meshes in C1+α star like domains with 1− 2

d <
α < 1, (A.K., 2013). This is a substantial decrease in required smoothness of the star like domain compared to the
C2 condition shown earlier.

Using the tangential Bernstein type inequality (9) the existence of optimal meshes was verified in any
convex body on the plane R2, (A.K., 2019). Recently a different proof was given by A. Prymak using an intrinsic
connection between optimal meshes and asymptotic properties of the Christoffel functions.
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3.2 Discretization of uniform norms of exponential sums. Now we turn our attention to some new results
on discretizing uniform norms of exponential sums

g(w) =
∑

0≤j≤n

cje
⟨µj ,w⟩, µj ,w ∈ Rd. (15)

In contrast with the trigonometric exponential sums when the exponents µj ∈ Rd in (15) are arbitrary the basis
functions e⟨µj ,w⟩ are in general not orthogonal, and hence this crucial Fourier analytic tool is not available. Instead
we can rely again on Bernstein-Markov type inequalities of Section 2.3. As before µ∗

n := max0≤j≤n |µj | is the degree
of the exponential sums (15). Then we have the next discretization result (A.K., 2020) when d = 1:

Given any n ∈ N, 0 < δ, τ ≤ 1, [α, β] ⊂ R, and µj ∈ R, 0 ≤ j ≤ n satisfying µj+1 − µj ≥ δ
β−α , 0 ≤ j ≤ n− 1 we

can give discrete points sets YN ⊂ [α, β] of cardinality

N ≤ cn√
τ
ln

µ∗
n

δ
√
τ

(16)

with an absolute constant c > 0 so that for every exponential sum g(x) =
∑

0≤j≤n cje
µjx, cj ∈ R we have

∥g∥L∞[α,β] ≤ (1 + τ)∥g∥L∞(YN ).

An explicit construction of nodes is given based on equidistribution with respect to the measure

µ1(E) :=

∫
E

dx

1− x2
, E ⊂ (−1, 1) (17)

appearing in the Bernstein type inequality (10). In addition, the discrete set is universal in the sense that it depends
only on dimension n, degree µ∗

n and separation parameter δ of the exponential sums.

The above upper bound for the cardinality of the discrete meshes turns out to be near optimal in the sense that
(16) is sharp with respect to both dimension n and accuracy τ up to log term, the degree µ∗

n and separation parameter
δ of the exponential sums appearing only in the log term has a limited effect on the bound. In fact sharpness of the√
τ term in the upper bound for cardinality is a special case of the following general statement ( A.K., 2020):
Let K ⊂ Rd be any compact set and assume that it possesses a discrete subset YN ⊂ K of cardinality N so that

||p||L∞(K) ≤ (1 + τ)||p||L∞(YN ), ∀p ∈ P d
n .

Then we have some cK > 0 depending only on the domain K

N ≥ cK

(
n√
τ

)d

.

The above discretization result extends to convex polytopes in Rd, d ≥ 2:
For any convex polytope K ⊂ Rd, d ≥ 2 and any µj ∈ Rd satisfying |µk − µj | ≥ δ, j ̸= k, 0 < δ ≤ 1 we can

explicitly give discrete points sets YN ⊂ K of cardinality

N ≤ c(K, d)

(
n√
τ
ln

µ∗
n

δτ

)d

such that for every exponential sum g(w) =
∑

0≤j≤n cje
⟨µj ,w⟩, w ∈ Rd we have

∥g∥L∞(K) ≤ (1 + τ)∥g∥L∞(YN ).
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4. Discretization of integral norms of polynomials and exponential sums

The following refinement of the classical Marcinkiewicz-Zygmund result similar to Bernstein’s estimate (1) was
recently given (A.K., 2020):

For any 0 = x0 < x1 < ... < xm+1 = 2π with spacing

max
0≤j≤m

(xj+1 − xj) <

√
τ

pn
,

and every trigonometric polynomial tn of degree at most n we have

(1− τ)

m∑
j=0

xj+1 − xj−1

2
|tn(xj)|p ≤

∫ 2π

0

|tn(x)|pdx ≤ (1 + τ)

m∑
j=0

xj+1 − xj−1

2
|tn(xj)|p, p ≥ 1. (18)

This is a Marcinkiewicz-Zygmund type estimate of precision τ similar to Bernstein’s uniform bound (1). Note
that the spacing needed above can be achieved with cardinality m ∼ n√

τ
where this is again sharp with respect to τ ,

as well. In particular, choosing equidistant nodes xj :=
2πj
m+1 , 0 ≤ j ≤ m+ 1 with m =

[
2πpn√

τ

]
+ 1 we obtain

(1− τ)
2π

m+ 1

m∑
j=0

|tn(xj)|p ≤
∫ 2π

0

|tn(x)|pdx ≤ (1 + τ)
2π

m+ 1

m∑
j=0

|tn(xj)|p.

We will present now a new discretization result for the integral norms of general exponential sums.

Let 1 ≤ p ≤ 2, [a, b] ⊂ R, 0 < δ ≤ 1, n ∈ N,Λ > 1. Then we can explicitly give discrete sets YN = {xj}Nj=1 ⊂ (a, b)
of cardinality

N ≤ c

(
n ln

Λ

δ

) 1
p+1

with an absolute constant c > 0, so that for all exponential sum g(x) =
∑

0≤j≤n cje
λjx with any λj ∈ R satisfying

λj+1 − λj ≥
δ

b− a
, 1 ≤ j ≤ n− 1, max

1≤j≤n
|λj | ≤ Λ

we have
∥g∥pLp([a,b])

∼
∑

1≤j≤N−1

(xj+1 − xj)|g(xj)|p. (19)

Again the estimate of the cardinality of discrete mesh is ”almost” independent of the exponents λj since its degree
Λ and separation parameter δ effects only the logarithmic term. Moreover, the discrete nodes constructed explicitly
are equidistributed with respect to the measure (17).

The above discretization result admits generalization to the unit cube Id := [0, 1]d in Rd. This requires some work
because the separation condition |λj+1 − λj | ≥ δ, 1 ≤ j ≤ n − 1 for the exponents λj ∈ Rd of the exponential sums
g(w) =

∑
0≤j≤n cje

⟨λj ,w⟩, λj ,w ∈ Rd does not necessarily extend to projections to coordinate axises, so dimension
reduction will work only with proper choice of directions.
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5. Discretization of integral norms of exponential sums with nonnegative coefficients

Degree and exponent independent Bernstein-Markov type inequality (13) for exponential sums

g(x) =
∑

1≤j≤n

aje
λjx, aj ≥ 0

with nonnegative coefficients leads to the next Marcinkiewicz-Zygmund type result (A.K., 2020):

Let p ∈ N,Λ > 1 and consider any distinct real numbers λj ∈ R, 1 ≤ j ≤ n with max1≤j≤n |λj | ≤ Λ. Then
discrete points sets YN = {x1, ..., xN} ⊂ [0, 1] of cardinality N ≤ cp ln Λ can be given so that for every exponential
sum f(x) =

∑
1≤j≤n aje

λjx, aj ≥ 0 with nonnegative coefficients we have∫ 1

0

fp(x)dx ∼
∑

1≤j≤N

(xj+1 − xj)f
p(xj). (20)

This provides an ”almost” degree independent Lp Marcinkiewicz-Zygmund type inequality for exponential sums
with nonnegative coefficients in case when p ∈ N is an integer. A slight modification leads to a similar result in case
of any p ≥ 1.

Moreover the above discretization result can be extended for convex polytopes in Rd:

Let d, p ∈ N,Λ > 1. Consider any convex polytope K ⊂ Rd. Then discrete points sets YN = {x1, ...,xN} ⊂ K
of cardinality N = O(lnd Λ) and positive weights a1, ..., aN can be given so that for any distinct λj ∈ Rd, 1 ≤ j ≤ n
with max1≤j≤n |λj | ≤ Λ and for every exponential sum g(x) =

∑
1≤j≤n cje

⟨λj ,x⟩,x ∈ Rd, cj ≥ 0 with nonnegative
coefficients we have

∥g∥pLp(K) ∼
∑

1≤i≤N

aig(xi)
p.

7



References
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[14] A. Kroó, On a refinement of Marcinkiewicz-Zygmund type inequalities, Proceedings of Krasovskii Institute of
Mathematics and Mechanics UB RAS, 26 (2020).

[15] D. Lubinsky, Lp Markov-Bernstein inequalities on arcs of the unit circle, J. Approx. Theory 108(2001), 1-17.

[16] J. Marcinkiewicz, and A. Zygmund, Mean values of trigonometric polynomials, Fund. Math. 28(1937), 131-166.

[17] G. Mastroianni, and V. Totik, Weighted polynomial inequalities with doubling and A∞ weights, Constr. Approx.
16(2000), 37-71.

[18] H. N. Mhaskar, F. J. Narcowich, J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadra-
ture, Math. Comp. 70(2001), 1113-1130. Corrigendum: Math. Comp. 71(2001), 453-454.

[19] S.M. Nikolskii, On a certain method of covering domains and inequalities for multivariate polynomials, Mathe-
matica, 8 (1966), 345-356.

[20] A. Prymak, Geometric computation of Christoffel functions on planar convex domains, submitted.

[21] V.N. Temlyakov, The Marcinkiewicz-type discretization theorems, Constr. Approx. 48 (2018), 337-369.

8


