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Let D C R? be a compact set with non-empty interior, I, ; be the space of real algebraic
yolynomials of total degree < n in d variables. Equip D with Lebesgue measure and let
poly g < [y g

{p;})X, be an orthonormal basis of TI,, 4 with respect to the inner product (f,g) = [, fgda,

N = dim(Il,, 4) = (”T{). Christoffel function associated with D is then

N -1
Au(a, D) = | Y pj(=)?
e’
A useful equivalent definition is Mila, D) = min ||f||%2(D). xzeD.
JE, 4. |f(z)|=1

A ¢ R
lqv = f v"V*'l
X

For a compact set D C R? with non-empty interior and a continuous function f on D, we
denote || f||c(p) = maxqep |f(x)|. If there exists a sequence {Y},},,>1 of finite subsets of D such

that the cardinality of Y,, is at most pn? while

Iplley < viplew,) forany pell, .

where pt, v > 0 are constants depending only on D, then D possesses optimal polynomial meshes.




It was conjectured by Kroo [K1] that any convex compact set possesses
optimal polynomial meshes. Until recently, this was established only for various classes of
domains, namely, for convex polytopes in [K1], for C* star-like domains with a > 2 — % in [K2],
for certain extension of C* domains in [P1]. Finally, in [K4] Kroo settled the conjecture in
affirmative for d = 2 proving existence of optimal polynomial meshes for arbitrary planar
convex domains using certain tangential Bernstein inequality. For d > 3 the question is still
open. Here we show another proof of the conjecture for d = 2 using a different technique based

on Christoffel functions and an application of Tchakaloft’s theorem.
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Lemma 4.1 ([BV, Lemma 2.2]). SupposcXom— {a:(l), ¥ ,:z:(s)} C D are the nodes of a positive

quadrature formula precise for Iy, 4, i.e. there exist weights w; >0, i =1,...,s, such that

(4.1) / p(x) de = Z wip(2)  Vp € Ty
D

i=1

Then for any & € D

(€, D)
= N [~ DY (X v HN('
|p(£)| - /\‘Zn (E D) ||p||(4()£2n)‘ pe d
162 M(x, D) = min ey, @cdl
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Proof. Fix £ € D. Let q € 11,4 be a polynomial attaining the minimum in (1.2), i.e.,

(4.2) q(&)=1 and / ¢*(x) de = )\, (£, D).
D
For any p € 11, 4, define r(x) := p(x)q(x), & € D, then r € 1y, 4. Further, by (1.2)
(43) P€) = r©) < 1eD) | ra)d
while by (4.1) and (4.2)
/D’"Q(f'?) dx = Z U'iPQ(w(i))(IQ(w(i)) < ||P||?"(X2,,) Zl"i(IQ(w(i)) = ||P||%(4\'2n)/\n(€- D},
i=1 =1

which, in combination with (4.3), is the required inequality. O




Existence of the required positive quadrature formula (4.1) with s < dim(I1y, 4) is well-known.
For the Lebesgue measure, which is our settings, this was originally proved by Tchakaloft [T].
The result has been generalized in various directions, see, for example [P] and [DPTT, Theo-

rem 4.1].
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By Tchakaloft’s theorem and Lemma 4.1, we obtain the following.

Proposition 4.2. Suppose D C R? is a compact set with non-empty interior satisfying
Mz, D) < (D)X (x, D)  forany x €D

with ¢(D) > 0 independent of n and x. Then D possesses optimal polynomial meshes.

This proposition in combination with Corollary 3.5 immediately implies existence of optimal

polynomial meshes for arbitrary planar convex domains.

Corollary 3.5. For any planar convexr domain D, x € D and n > 1

(3.2) Aon(x, D) = A, (x, D).




Remark 4.5. Slight changes of arguments presented here allow to obtain an s-version of the
existence of optimal meshes. Namely, for every planar convex body D and every ¢ > 0 there
exists a sequence {Y,},>1 of finite subsets of D such that the cardinality of Y}, is at most j(z)n?
while

IPlow) < (X+e)llpllory,) forany p€Tla.
To achieve this, one simply needs to consider A,,,(&, D) in place of Ay, (&, D) for a sufficiently

large m = m(e).

Remark 4.6. Note that Tchalakoft’s points can be found numerically, see e.g. [D].

(D] Philip J. Davis, A construction of nonnegative approzimate quadratures, Math. Comp. 21 (1967),

578-582.

Typically, asymptotics of Christof-
fel function is established showing that for any fixed point @ in the interior of D one has
lim,, 0 19N\, (., D) = ¥(a) for an explicit or estimated function ¥(z), in which case the decay
of W(x) when @ is close to the boundary of D is of particular interest. We establish behavior
of Christoffel function, i.e., for any n and any @ € D we calculate \,(D,x) up to a constant
factor independent of n and @. This implies estimates of W(x) (provided it exists) and is useful

in applications where n is fixed while x varies.
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(1.1) A(@, D) = | D pi()?
j=1
For specific domains, such as simplex, cube or ball. an orthonormal basis can be computed
and (1.1) can be used to find Christoffel function, see, e.g. [X].
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Anal. 3 (1996), no. 2, 257-272.

: 2
(1.2) Sl ly=., Ifllz2p) @ € D.
By (1.2), for two domains satisfying D; C Dy C R? M@, D)) < A(x,Ds), x€ Dy,
and for any T € A M(Tz, TD) = A,(2,D)|det T|, x € D.

In [K3] lower and upper estimates on Christoffel function on convex and starlike domains

were obtained in terms of Minkowski functional of the body.
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(2015), no. 1, 718-729.

In [P2] we obtained upper estimates on Christoftel
function for convex domains in terms of few easy-to-measure geometric characteristics of the
location of & inside D. The estimates were obtained comparing D with a parallelotop containing
D. This was followed by the lower estimates in [PU1] obtained by comparison with ellipsoids
contained in D. In particular, in [PU1] the behavior of Christoffel function was computed for
{(@1.29) t |21]|* 4+ |22|* < 1} if 1 < a < 2 and it was suggested that the class of convex bodies
for which the lower bounds of [PU1] and upper bounds of [P2] match (up to a constant factor)

is rather large.

[P2] A. Prymak, Upper estimates of Christoffel function on conver domains, J. Math. Anal. Appl. 455
(2017), no. 2, 1984-2000.
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available at arXiv:math.CA/1709.10509.

In this work, we establish characterization of the behavior of Christottel function on arbitrary
planar conver domains using comparison with ellipses contained in the domain for the lower
bound and comparison with parallelepipeds containing the domain for the upper bound. This

is achieved by an appropriate refinement of the ideas of [P2] and [PU1].

The proofs are constructive and explicitly describe required ellipse and parallelepiped.




Let D C R? be a convex body, i.e. convex compact set with int(D) # (). For each x € int(D),

define

B={x: lenélg
(2.1) L(z, D) :=sup{(1 — ||L7'z|)"/?|det £L| : L€ A, x € LB C D} S=Loig?
y: ({3)4, (3’2)
A - atti + reusPrieg

and
(2.2) Uz, D) := inf{(U'x) (U x)) | detU| : U €A, x € U@LS), Dcusy.
Theorem 2.1. For any planar convex body D and any interior point ® € D

(2.3) U(z,D) < cL(z, D),

where ¢ is an absolute constant.

us

~

John’s theorem on inscribed ellipsoid of largest volume B c D c2B.

Lemma 2.2. Suppose @ € int(D), & # 0, and 6 > 0 are such that (1 +6/|x|)x € OD. Then
there exist a convex function f : [—1,1] — [0, 3] such that f(0) = f.(0) = 0 and |fi(x)] < 2
for x € [—1,1], and an affine transform Q € A with det @ = 3 such that Qx = (0,9),

(2.5) (@D)N (L1 x [0.3]) ={(z.y): -1 <2 <1, f(z) Sy <1},
and
(2.6) (QD)N (-1, 1] x[0,3]) ={(z,y) : -1 <z <1, y = f(2)}.
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Lemma 2.4. Suppose f: [—1,1] — [0, 3] is a convex function such that f(0) = f}(0) =0 and

|fi(z)| <2 for x € [~1,1]. Assume, in addition, that 0 < § < f(—=1) + f(1). Then there exist
k>0,¢e[-1,1]\ {0}, and a linear function ((x) = ax — B with |a|, B € (0,2], such that

(2.13) flz) < g + kx?  for all x € [-1,1],
(2.14) (&) = f(&), (&) =rL(&) orl(§) = fi(§), and
(2.15)
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Theorem 3.1. Suppose D is a convexr compact set satisfying B C D C 2B. For anyn > 1
and any x € D define 7,,(x) ==z if x € (1 — 27*n~2)D, and 7,(x) := tx where t > 0 is the

largest scalar satisfying txz € (1 —27*n=2)D. Then

(3.1) M(x, D) = n 2L(1,(x), D) = n~2U(.(x), D).

Lemma 3.4 ([P2, Proposition 1.4]). If D is a planar convex body with 0 € D, then for any
xeD
Au(z, D) ~ N\, (uz,D), pe[l-2"*n"21).

Corollary 3.5. For any planar convex domain D, x € D and n > 1
(3.2) Aon(@, D) = \, (2, D).

Proof. We can invoke the considerations of Remark 3.2 to assume B C D C 2B, so that
Theorem 3.1 is applicable. If 7,(x) = @, then also m,(x) = x, so (3.2) follows directly
from (3.1). Otherwise, we have \,(7,(x),D) = \,(x, D) by Lemma 3.4. It is easy to observe
that there exists a positive integer m independent of n satisfying

-2 Pcl—-0""

Therefore, iterating Lemma 3.4 at most m times, we obtain As, (7, (), D) &= A\a,(x, D), and (3.2)

for & follows from already established (3.2) for 7, (x). O

(¢




Theorem 3.1. Suppose D is a convexr compact set satisfying B C D C 2B. For anyn > 1
and any x € D define 7,(x) = x if x € (1 —27*n"2)D, and 7,(x) := tx where t > 0 is the

largest scalar satisfying txz € (1 —27*n=2)D. Then

(3.1) M(2, D) =~ n~2L(r,(x), D) =~ n=2U(7,(2), D).
/OWW )Ddu.ué uces
(3.7) A(z,B) m n~3(1—||2[)*?, ze(1-2"n"?)B. Beructein e R Al l«r.b
&r '/'n‘g pel-s.
(3.11) M(2,8) < en\/(2)1(2)s, forany ze[27n72% 12 teusor product o4 polywo-

muads  obtaied o Che bysle
(>o(-s C‘—"vhlzd Ib One ,{ mm’oes
/Vear- oP»HVM.é PO(DMW'M i (1.2) Cau he wu S'ILru(_-pL\:,d /

1.2 M(x, D) = min 2 , xxeD.
(1.2) (z.D) fEH“_']Alf(m)‘zl||fHL2(D)

Ezample 3.9. Let D, be the trapezoid with the vertices (£a,0), (£1,1), where a € (0,1]. Then

for an absolute constant ¢ > 0

(3.12) M((0,6), D,) =n~2y/6(a+6), for &€ [en™2

NoI=

Proof. Let us only provide the main computation and omit other technical details. We follow
the proof of Theorem 2.1 and find % as in the proof of Lemma 2.4, which requires the smallest

k > 0 such that

r—a _0 5
< —+kat forall xe[-1,1].
l—a = 2 [ )
Then the parabola y = % + ka? is tangent to the line y = == and one finds k ~ (0 + a)™1/? (the

restrictions on a and 0 imply that the point of tangency x = £ isin (0, 1)). Thus L((0,6), D,) =~

U((0,6), D,) =~ /300 + a). O

)
(-\I\\ ¢ l / ; (‘/()
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(2.1) L(z,D) :=sup{(1 — ||£ «||)"/?|det £L| : L € A, = € LB C D}

(2.2) U(z, D) := inf{(U x) (U x):)/?|detU| : U € A, = € U(3S), D cusy.

Remark 3.8. Tt is easy to extend the definitions (2.1) and (2.2) to the higher dimensions, and
we conjecture that the corresponding generalizations of Theorems 2.1 and 3.1 are true. While
Lemma 2.2 is not hard to generalize, Lemma 2.4 is for two dimensions only. One can observe
that in the planar case (d = 2) there is only one parameter (k) to define the needed parabola
(see (2.16)), while for d > 2 there will be d — 1 parameters which makes generalization of (2.16)

and handling the resulting points of tangency much more difficult.

(2.16) k = inf {1} >0:

/9

Corollary 3.5. For any planar conver domain D, @ € D and n > 1
(3.2) Aon (2, D) = N, (z, D).

Remark 4.3. Our proof of Corollary 3.5 from Theorem 3.1 readily transfers to higher dimensions.
Therefore, generalization of Theorem 3.1 to higher dimensions (see Remark 3.8) would imply
existence of optimal polynomial meshes for arbitrary convex bodies, i.e., would confirm Kroo’s
conjecture for d > 2. However, it might be a more accessible task to generalize only Corollary 3.5

which is a much weaker statement than Theorem 3.1.

Remark 4.4. We would also like to comment about similarities and differences of the proofs of
existence of optimal polynomial meshes in arbitrary planar convex bodies from this work and
from [K4]. A very important part of both proofs is consideration of certain parabolas inside
the domain. In our proof we were able to “localize” the problem and work with a fixed interior
point; “global” part of the argument was delegated to Tchakaloft’s theorem and Lemma 4.1.
In [K4], a maximal function was used to prove a “global” tangential Bernstein inequality. While

smoothing of the boundary was needed in [K4], we managed to avoid this due to Lemma 3.4.
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See
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Condition C. Let Xy :

= span(uy,....uy). There exist two constants K3 and
K4 such that the following Nikol'skii-type inequality holds for all f € Xy:

Illc < KaN*4/?|fll,  p€[2,00).
N
Condition E. There exists a constant t such that M\, (x, D) = (ZI)-
N A . e
w(z) = Z ui(z)? < Nt2, r e
i=1
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