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Agenda

1. Recovery in linear spaces : applicative settings and objectives.

2. Weighted least-squares methods : first estimation bounds.

3. Optimal sampling measure : theory and practical aspects.

4. Sparsification : towards optimal sampling budget ?

5. More general measurements : inverse problems and PDEs.



An ubiquitous numerical problem

Reconstruct an unknown multivariate function

u : x 7→ u(x), x = (x1, . . . , xd ) ∈ D ⊂ Rd ,

from (noisy) observations y i ≈ u(x i ) at sample points x i ∈ D for i = 1, . . . ,m.

Distinction between two data acquisition settings :

Passive setting : we do not choose the x i .

Active setting : we choose the x i .

How should we sample ? How should we reconstruct ?



Passive aquisition setting

Input-output modeled by (x , y) ∈ D × R is a random variable of unknown joint law.

We observe independant realizations (x i , y i ) for i = 1, . . . ,m. We search for a function
that best explains y from x .

Applicative context : regression, machine learning, denoising...

The quadratic risk E(|y − v(x)|2) is minimized among all functions v by u(x) := E(y |x)
which is unknown.

For ũ 6= u, one has

E(|y − ũ(x)|2) = E(|y − u(x)|2) + E(|ũ(x) − u(x)|2) = σ2 +

∫
D
|u(x) − ũ(x)|2dµ,

where dµ is the unknown probability measure of x .

We thus measure performance of a reconstruction ũ by ‖u − ũ‖L2(D,µ).

Inherently noisy setting : y i = u(x i ) + ηi , where ηi is a noise E(η|x) = 0.



Active aquisition setting

We are allowed to query an unknown map x 7→ u(x), typically by running an
experiment or a numerical simulation.

Each (offline) query x i 7→ y i = u(x i ) is costly (and could be noisy).

We want to compute an approximation map x 7→ ũ(x) that is much cheaper to
evaluate (online) than u.

Applicative context : model reduction, data aquisition, inverse problems, design of
computer experiments.

We measure performance by ‖u − ũ‖L2(D,µ) where µ can be chosen by us, for example
the Lebesgue measure.

Is there an optimal choice of the sample (x1, . . . , xm) ? Easy to construct ?

We can invest some offline time designing the sample (prune from a larger sample).

When d >> 1 we want to avoid uniform grids (curse of dimensionality).

The function u may take its value in R, or Rk , or in an infinite dimensional space.



Optimal recovery

Let V be a general Banach space of functions defined on D, and let K ⊂ V a class
that describes the prior information on u (for example smoothness).

We define the deterministic optimal recovery numbers

rdetm (K)V := inf
x,Φx

max
u∈K
‖u −Φx(u(x

1), . . . , u(xm))‖V ,

where infimum is taken on all x = (x1, . . . , xm) ∈ Dm and maps Φx : Rm → V .

Randomized setting (random sampling) :

r randm (K)2
V := inf

x,Φx

max
u∈K

Ex(‖u −Φx(u(x
1), . . . , u(xm))‖2

V ),

where infimum is taken on all random variable x ∈ Dm and linear Φx : Rm → V .

Linear recovery : define ρdetm (K)V and ρrandm (K)V similarly but with Φx linear.

Obviously : rdetm (K)V ≤ ρdetm (K)V and r randm (K)V ≤ ρdetm (K)V .

Also : r randm (K)V ≤ rdetm (K)V and ρrandm (K)V ≤ ρdetm (K)V .



Approximation

Error measure : ‖u − ũ‖V , where V := L2(D, µ), or other Banach space of interest.

Most often, the reconstruction ũ takes place within a family Vn ⊂ V that can be
parametrized by n ≤ m numbers.

So it is relevant to compare ‖u − ũ‖V with

en(u)V = min
v∈Vn

‖u − v‖V .

We restrict our attention to linear families : Vn is a linear space with n = dim(Vn).

If V is a Hilbert space, en(u) = ‖u − PVnu‖V with PVn the V -orthogonal projection.

Classical choices : algebraic polynomials, spline spaces, trigonometric polynomials,
piecewise constant functions on a given partition of D.

Optimized choices : if our prior information is that u ∈ K where K ⊂ V is some
compact class we are interested in spaces Vn that perform close to the Kolmogorov
n-width, that is defined for a general Banach space V by

dn(K)V := inf
dim(Vn)=n

max
u∈K

en(u)V .



Kolmogorov n-widths

An optimal space achieving the infimum is not easy to construct.

It can be emulated by reduced basis spaces Vn = span{u1, . . . , un}, with ui ∈ K.

Greedy selection : given Vk−1 pick next uk such that

‖u − uk‖ = max
u∈K
‖u − PVk−1

u‖V ,

or in practice ‖u − uk‖ ≥ γmaxu∈K ‖u − PVk−1
u‖V for fixed γ ∈]0, 1[.

Such algorithms have been proposed by Maday-Patera in the particular context of
reduced order modeling, where the class K consists of solutions u to a PDE as we vary
certain physical parameters (solution manifold).
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Approximation performances

For the greedily generated spaces Vn, we would like to compare

σn(K)V = dist(K,Vn)V = max
u∈K
‖u − PVnu‖V ,

with the n-widths dn(K)V that correspond to the optimal spaces.

Direct comparison is deceiving.

Buffa-Maday-Patera-Turinici (2010) : σn ≤ n2ndn.

For all n ≥ 0 and ε > 0, there exists K such that σn(K)V ≥ (1 − ε)2ndn(K)V .

Comparison is much more favorable in terms of convergence rate.

Binev-Cohen-Dahmen-DeVore-Petrova-Wojtaszczyk (2013) : For any s > 0,

sup
n≥1

nsdn(K)V <∞⇒ sup
n≥1

nsσn(K)V <∞,
and

sup
n≥1

ecn
s
dn(K)V <∞⇒ sup

n≥1
e c̃n

s
σn(K)V <∞,



Nonlinear approximation

Approximation in linear spaces is known to be no so effective for several relevant
model classes K in Banach spaces V : poor decay of dn(K)V .

Improved performance can be achieved by nonlinear approximation methods : the
function u is approximated by simpler functions v ∈ Σn that can be described by O(n)
parameters, however Σn is not a linear space.

1. Rational fractions : Σn =
{

p
q
; p, q ∈ Pn

}
.

2. Neural networks : functions v : Rd → Rm of the form

v = Ak ◦ σ ◦ Ak−1 ◦ σ ◦ Ak−2 ◦ · · · ◦ σ ◦ A1,

where Aj : Rdj → Rdj+1 is affine and σ is a nonlinear (rectifier) function applied
componentwise, for example σ(x) = RELU(x) = max{x , 0}. Here Σn is the set of such
functions when the total number of parameters does not exceed n.

3. Best n-term / sparse approximation in a basis (ek )k≥1 : pick approximation from
the set Σn = {

∑
k∈E ckek : #(E ) ≤ n}.

4. Piecewise polynomials, splines, finite elements on meshes generated after n steps of
adaptive refinement (select and split an element in the current partition).

Example 3 and 4 : adaptively generated linear spaces V1 ⊂ V2 ⊂ · · · ⊂ Vn . . .



General objectives

Ideally we would like to combine

Instance optimality : achieve ‖u − ũ‖V ≤ Cen(u)V for any u, for some fixed C .

Budget optimality : use m ∼ n samples (up to log factors).

Progressivity : when using V1 ⊂ V2 ⊂ . . .Vn cumulated budget stays m ∼ n.

In recent years, significant progresses have been made on randomized sampling and
least-squares reconstruction strategies from various angles, allowing to reach the
above (and other related) objectives.

Information based complexity : Wozniakowski, Wasilkowski, Kuo, Krieg, M. Ullrich,
Kämmerer, Volkmer, Potts, T. Ullrich, Oettershagen, ...

Uncertainty quantification and model reduction : Doostan, Hampton, Narayan,
Jakeman, Zhou, Nobile, Tempone, Chkifa, Webster, Harberstisch, Nouy, Perrin...

Approximation theory : Cohen, Davenport, Leviatan, Migliorati, Bachmayr, Arras,
Adcock, Huybrechs, Temlyakov...



A simple example : interpolation by univariate polynomials

Consider D = [−1, 1] and V = C(D) equipped with the max norm ‖ · ‖V = ‖ · ‖L∞ .

Take Vn = Pn−1 univariate polynomials of degree n − 1.

With (x1, . . . , xn) ∈ [−1, 1] pairwise distincts, reconstruct by the interpolation operator

ũ = Inu ∈ Pn−1, s.t. Inu(x
i ) = u(x i ), i = 1, . . . , n.

Budget is optimal : m = n points have been used.

Instance optimality : governed by Lebesgue constant Cn = maxu 6=0
‖Inu‖L∞
‖u‖L∞ , since

‖u − Inu‖L∞ ≤ ‖u − v‖L∞ + ‖Inv − Inu‖L∞ ≤ (1 + Cn)‖u − v‖L∞ , v ∈ Vn,

thus bounded by (1 + Cn)en(u)L∞ .

Equispaced points are known to yield Cn ∼ 2n.

Chebychev points
{

cos
(

2kπ
2n+1

)
: k = 1, . . . , n

}
yield optimal value Cn ∼ ln(n).



Limitations

Multivariate case : no general theory for optimal points on a general domain D ⊂ Rd .

What about other types of spaces Vn ?

Fekete points : if Vn is a linear space with basis (φ1, . . . , φn), then the points

(x1, . . . , xn) = argmax
{

det(φi (zj ))i,j=1,...,n : (z1, . . . , zn) ∈ Dn
}
,

yields Cn ≤ n but are not simply computable : non-convex optimization in Rdn.

For univariate polynomials these points maximizes
∏

j 6=i |x
i − x j |.

Progessivity : the Chebychev and Fekete points are not nested as n→ n + 1 !

The Clenshaw-Curtis points Gn =
{

cos
(

kπ
n−1

)
: k = 0, . . . , n−1

}
are partially nested :

G3 ⊂ G5 ⊂ G9 ⊂ · · · ⊂ G2j+1 ⊂ G2j+1+1 ⊂ · · ·

How to fill-in by intermediate points and preserve a well-behaved Lebesgue constant ?



Lebesgue constant for nested sets
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Sequential

Clunshaw−curtis
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Leja 

R−Leja

Left : fill-in by increasing order.

Right (blue) : fill-in by Van der Corput enumeration Cn ≤ n2 (Chkifa, 2013).

Right (red) : greedy Fekete (Leja) max
∏k−1

j=1 |x − x j |→ xk . Open problem : Cn ∼ n ?

The behaviour Cn ∼ ln(n) does not seem achievable with nested sets.



Least-squares reconstruction

From now on, V = L2(D, µ). Notation : ‖v‖ = ‖v‖L2(D,µ), and en(u) = ‖u − PVnu‖.

The L2(D, µ)-projection

PVnu := argmin
{ ∫

D
|u(x) − v(x)|2dµ : v ∈ Vn

}
,

is out of reach =⇒ replace the integrals by a discrete sum∫
D
v(x)dµ ≈

1

m

m∑
i=1

w(x i )v(x i ).

where w is a weight function. This is the (weighted) least-squares method

un := argmin
{ 1

m

m∑
i=1

w(x i )|y i − v(x i )|2 : v ∈ Vn

}
.

In the noiseless case y i = u(x i ), the solution is the orthogonal projection of u onto Vn

for the discrete (semi)-norm

‖v‖2
m :=

1

m

m∑
i=1

w(x i )|v(x i )|2,

that should in some sense be close to ‖v‖2.



Randomized sampling

Draw (x1, . . . , xm) i.i.d. according to a sampling probability measure σ.

Use a weight w such that
w(x)dσ(x) = dµ(x).

The random norm ‖v‖2
m = 1

m

∑m
i=1 w(x i )|v(x i )|2 then satisfies, for any function v ,

E
(
‖v‖2

m

)
= Eσ(w(x)|v(x)|2) =

∫
D
w(x)|v(x)|2dσ =

∫
D
|v(x)|2dµ = ‖v‖2.

Unweighted choice : w = 1 and dσ = dµ may lead to suboptimal results

Optimality results will be achieved by appropriate choices of w and σ.

The weighted least-squares approximation un is now a random object. Its accuracy
should be studied in some probabilistic sense, for instance E(‖u − un‖2).



Accuracy analysis

General strategy : study the probabilistic event Eδ of the equivalence

(1 − δ)‖v‖2 ≤ ‖v‖2
m ≤ (1 + δ)‖v‖2, v ∈ Vn,

for some 0 < δ < 1, for example δ = 1
2

.

This is an instance (p = 2 and wi = m−1w(x i )) of a Marcinkiewicz-Zygmund
inequality :

(1 − δ)

∫
D
|v(x)|pdµ ≤

m∑
i=1

wi |v(x
i )|p ≤ (1 − δ)

∫
D
|v(x)|pdµ, v ∈ Vn.

Let (L1, . . . , Ln) be an L2(D, µ)-orthonormal basis of Vn and consider the random
Gramian matrix

G = (Gk,j )k,j=1,...,n, Gk,j :=
1

m

m∑
i=1

w(x i )Lk (x
i )Lj (x

i ) = 〈Lk , Lj 〉m.

Then
Eδ ⇐⇒ (1 − δ)I ≤ G ≤ (1 + δ)I ⇐⇒ ‖G − I‖2 ≤ δ.

Note that G = 1
m

∑m
j=1 X

i , where Xi are i.i.d. realizations of

X = (w(x)Lk (x)Lj (x))k,j , x ∼ σ, so E(G) = I



A first accuracy bound

Under the event E1/2, one has 1
2
‖v‖2 ≤ ‖v‖2

m ≤ 3
2
‖v‖2 for all v ∈ Vn, and so

‖u − un‖2 = en(u)
2 + ‖Pnu − un‖2 ≤ en(u)

2 + 2‖Pnu − un‖2
m.

In addition ‖u − un‖2
m = ‖Pnu − un‖2

m + ‖Pnu − u‖2
m, and so

‖u − un‖2 ≤ en(u)
2 + 2‖u − Pnu‖2

m.

Since E(‖u − Pnu‖2
m) = en(u)2, we reach

E(‖u − un‖2χE1/2
) ≤ 3en(u)

2.

We can test the validity of E1/2 by checking if ‖G − I‖2 ≤ 1
2

.

First choice : define ũ = un if E1/2 holds and ũ = 0 gives the estimate

E(‖u − ũ‖2) ≤ 3en(u)
2 + δ‖u‖2, δ := Pr(E c

1/2).

Is δ small with m ∼ n ?

Key tools : Christoffel functions and matrix concentration.



Boosting

Haberstisch-Nouy-Perrin (2019) : redraw {x1, . . . , xm} until E1/2 holds and take ũ = un

If δ = Pr(E c
1/2

) then the number of needed redraw k∗ follows a Poisson law : one has

k∗ > k with probability δk and E(k∗) = 1
1−δ

.

The resulting sample x1, . . . , xm follows the law ⊗mσ conditionned to E1/2 and
therefore, by Bayes rule

E(‖u − ũ‖2) = E(‖u − un‖2 |E1/2) = Pr(E1/2)
−1E(‖u − un‖2χE1/2

),

which gives for all u ∈ V (non uniform result : first fix u, then draw sample),

E(‖u − ũ‖2) ≤ Cen(u)
2, C :=

3

1 − δ
.

Assume Vn contains constants and that M := µ(D) =
∫
|1|2dµ <∞. Then under E1/2,

we have 1
m

∑m
i=1 w(x i ) = ‖1‖2

m ≤ 3M
2

, so both ‖ · ‖ and ‖ · ‖m dominated by ‖ · ‖L∞ .

Therefore, for the boosted sample x1, . . . , xm, we are ensured that for all u ∈ C(D),

‖u−un‖ ≤ ‖u−v‖+‖v−un‖m ≤ ‖u−v‖+‖u−v‖m ≤ C‖u−v‖L∞ , C :=
√
M(1+

√
3/2),

and therefore (uniform result : first fix a deterministic sample, then pick any u)

‖u − ũ‖ ≤ Cen(u)L∞ .



Christoffel functions

With L1, . . . , Ln an L2(D, µ)-orthonormal basis of Vn, define

kn(x) :=
n∑

j=1

|Lj (x)|
2,

the inverse of the Christoffel function, also defined as

kn(x) = max
v∈Vn

|v(x)|2

‖v‖2
.

We use the notation

Kn := ‖kn‖L∞ := sup
x∈D

n∑
j=1

|Lj (x)|
2 = max

v∈Vn

‖v‖2
L∞

‖v‖2
.

These quantities only depends on Vn and µ.

For the given weight w , we introduce

kn,w (x) := w(x)kn(x),

and Kn,w := ‖kn,w‖L∞ , which only depends on (Vn, µ,w).

Since
∫
D kn,wdσ =

∑n
j=1

∫
D |Lj |

2dρ = n, one has

Kn,w ≥ n.



Matrix concentration inequalities

Matrix Chernoff bound (Ahlswede-Winter 2000, Tropp 2011) : let G = 1
m

∑m
i=1 X

i

where Xi are i.i.d. copies of an n × n symmetric matrix X such that E(X) = I and
‖X‖ ≤ K a.s. Then

Pr
{
‖G − I‖ ≥ δ

}
≤ 2n exp

(
−
mcδ

K

)
,

where cδ := (1 + δ) ln(1 + δ) − δ > 0.

In our case of interest,

X = w(x)(Lk (x)Lj (x))j,k=1,...,n = xxT , x = (w(x)1/2Lk (x))k=1,...,n,

with x distributed according to σ, which has expectation E(X) = I, and

K = sup ‖X‖ = sup |x|2 = sup
x∈D

w(x)
n∑

j=1

|Lj (x)|
2 = Kn,w .

This gives the sampling budget condition

m ≥ cKn,w ln(2n/ε) =⇒ Pr(E c
1/2) = Pr

{
‖G − I‖ ≥

1

2

}
≤ ε,

with c = c−1
1/2
≤ 10. For the boosted sample, take ε = 1

2
, and so m ≥ 10Kn,w ln(4n).



Optimal estimation and sampling budget

Using the boosted sample, we achieve near optimal non-uniform estimate

E(‖u − ũ‖2) ≤ Cen(u)
2

as well as uniform estimate (assuming µ(D) <∞ and 1
m

∑m
i=1 w(x i ) <∞)

‖u − ũ‖ ≤ Cen(u)L∞
under a sampling budget m ∼ Kn,w ≥ n up to multiplicative logarithmic factor.

In the presence of noise of variance κ(x)2, the estimation bound has an additional term

en(u)
2 +

n

m
κ2, κ2 =

∫
D
|κ(x)|2dµ.

Unweighted least-squares : w = 1 and σ = µ requires m ∼ Kn = maxx∈D
∑n

j=1 |Lj (x)|
2

Sometimes Kn >> n. leading to an excessive sampling budget.



Illustration on univariate polynomials Vn = Pn−1

Regime of stability : probability that ‖G − I‖ ≤ 1
2

, white if 1, black if 0.

Unweighted case requires at least m ∼ Kn.

Left : D = [−1, 1] with dµ = dx

π
√

1−x2
(Chebychev polynomials Kn = 2n + 1 ∼ n).

Center : D = [−1, 1] with dµ = dx
2

(Legendre polynomials Kn = n2)

Right : D = R with dµ = 1√
2π

e−
x2

2 dx (Hermite polynomials Kn =∞).

For the gaussian case, a more ad-hoc analysis shows that stability holds if m>∼ exp(cn)



Optimal sampling measure

Narayan-Jakeman (2015), Doostan-Hampton (2015), Cohen-Migliorati (2017) : use
sampling measure

dσ :=
kn

n
dµ =

1

n

( n∑
j=1

|Lj |
2
)
dµ =⇒ w(x) =

n

kn(x)
.

σ is a probability measure and we have kn,w (x) = w(x)kn(x) = n, thus Kn,w = n.

With this sampling strategy, optimal error bounds can be achieved with near optimal
sampling budget m ∼ n up to logarithmic factors.

Observation by T. Ullrich (2020) : if µ has finite mass µ(D) = M <∞, one can also

use d σ̃ := ( 1
2M

+ kn
2n
)dµ ensuring both Kn,w ≤ 2n and 1

m

∑m
i=1 w(xi ) ≤ 2M.
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The optimal density is not fixed

When using a sequence (Vn)n≥1 of approximation spaces

dσ = dσn :=
kn

n
dµ.

Illustration : sampling densities σn for n = 5, 10, 20.
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Left : Polynomials of degrees 0, . . . ,m − 1 and µ Gaussian.

Right : Piecewise constant functions on locally refined partitions and µ uniform.



Dependence on the domain geometry

Consider the space Vn = Pk of polynomials of total degree k on a multivariate domain
D ⊂ Rd , so that

n =
(k + d

d

)
and use the uniform probability measure dµ = |D |−1dx .

The local behaviour of kn and thus of σn depends on closeness to the boundary of D
and on the smoothness of this boundary.

Cohen-Dolbeault (2020) : For smooth domains kn(x) = O(n
d+1
d ) on boundary, for
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Inverse Christoffel function kn(x) for n = 231 (total degree k = 20)



Examples of draw according to optimal sample distribution



Sampling the optimal density

Problem : generate efficiently i.i.d. samples according to the optimal sampling measure

dσ = dσn =
kn

n
dµ =

1

n

( n∑
j=1

|Lj |
2
)
dµ.

This problem might be non-trivial in a multivariate setting D ⊂ Rd .

In many relevant instances µ is a product measure (such as uniform, gaussian) and
thus easy to sample, but dσn is not. Sampling strategies :

(i) Rejection sampling : draw x i according to µ and a uniform random variable z i in

[0,M] where M ≥ ‖kn‖L∞
n

. Reject x i if z i > kn(x
i )

n
.

(ii) Conditional sampling : obtains first component by sampling the marginal dσ1(y1),
then the second component by sampling the conditional marginal probability dσy1 (y2)
for this choice of the first component, etc...

Strategies (ii) is more efficient in cases where the Lj have tensor product structure.

(iii) Mixture sampling : draw uniform variable j ∈ {1, . . . , n}, then sample with
probability |Lj |

2dµ.

Migliorati (2018) : one can also split the sample into n batches of size O(ln(n)) each
of them sampled according to dνj = |Lj |

2dµ, with same final estimation bounds.



Sampling on general domains

Optimal sampling may become unfeasible when D ⊂ Rd is a domain with a general
geometry : the L1, . . . , Ln have no simple expression and cannot be computed exactly.

General assumptions : χD is easily computable ⇒ sampling according to the uniform
measure µ is easy (sample uniformly on a bounding box, reject if x /∈ D).

Migliorati, Adcock-Cadenas (2019), Cohen-Dolbeault (2020) : two-step strategies

1. With M ∼ Kn ln(n) sample z1, . . . , zM according to the uniform measure, and define

µ̃ :=
1

M

M∑
i=1

δz i .

Construct an orthonormal basis L̃1, . . . , L̃n of Vn for the L2(X , µ̃) inner product and
define k̃n =

∑n
j=1 |L̃j |

2.

2. With m ∼ n ln(n) sample x1, . . . , xm according to

d σ̃ =
k̃n

n
d µ̃,

that is, select z i with probability pi =
k̃n(z

i )
Mn

.



Sequencial sampling

For a given hierarchy V1 ⊂ V2 ⊂ · · · ⊂ Vn, note that

dσn =
1

n

( n∑
j=1

|Lj |
2
)
dµ =

(
1 −

1

n

)
dσn−1 +

1

n
dνn where dνn = |Ln |

2dµ.

We use this mixture property to generate the sample in an incremental manner.

Assume that the sample Sn−1 = {x1, . . . , xm} have been generated by independent
draw according to the distribution dσn−1 with m = m(n − 1) sampling budget

Then we generate a new sample Sn = {x1, . . . , xm(n)} as follows :

For each i = 1, . . . ,m(n), pick Bernoulli variable bi ∈ {0, 1} with probability { 1
n
, 1 − 1

n
}.

If bi = 0, generate new x i according to dνn.

If bi = 1, recycle x i incrementally from Sn−1.

Arras-Bachmayr-Cohen (2018) : the cumulated number of sample Cn used at stage n
satisfies Cn ∼ n up to logarithmic factors with high probability for all values of n.

With high probability, the matrix G satisfies ‖G − I‖ ≤ 1
2

for all values of n.

Adaptive selection strategies ? See the lecture by Giovanni Migliorati.



Sparsification

Reducing further sampling budget to O(n) : logarithmic factors removable ?

Batson-Spielman-Srivastava (2014) : let x1, . . . ,xm be m ≥ n be vectors of Rn such
that

(1 − δ)I ≤
m∑
i=1

xix
T
i ≤ (1 + δ)I.

For any c ≥ 2 there exists S ⊂ {1, . . . ,m} with #(S) ≤ cn and weights si such that(
1 −

1
√
c

)2
(1 − δ)I ≤

∑
i∈S

sixix
T
i ≤ (1 + δ)

(
1 +

1
√
c

)2
I

Apply this to xi =
(√

w(x i )
m

Lj (x
i )
)
j=1,...m

with {x1, . . . , xm} a boosted sample.

Leads to a sample (x1, . . . , x2n) and weights wi = si
w(x i )
m

such that

α‖v‖2 ≤ ‖v‖2
2n ≤ β‖v‖2, v ∈ Vn,

where ‖v‖2
2n =

∑2n
i=1 wi |v(x

i )|2 and α = 1
2

(
1 − 1√

2

)2
, β = 3

2

(
1 + 1√

2

)2
.



Sparsified weighted least-squares

Based on these new samples and weights, we define a weighted least-squares estimate

ũ := argmin
{ 1

2n

2n∑
i=1

wi |u(x
i ) − v(x i )|2

}
.

for which we have for all u ∈ C(D)

‖u − ũ‖ ≤ Cen(u)L∞ ,
assuming that µ is a finite measure.

The sparsification strategy of Batson-Spielman-Srivastava is performed by a
deterministic greedy algorithm of total complexity O(mn3) : additional offline cost.

Temlyakov (2019) : comparison between deterministic linear optimal recovery numbers
in L2 and Kolmogorov n-width in L∞ for any compact class K of C(D).

By optimizing the choice of Vn, one obtains

ρdet2n (K)L2 ≤ Cdn−1(K)L∞ .
Other results when K is the ball of a RKHS : Krieg-M.Ullrich, Nagel-Schäffer-T.Ullrich



Randomized sparsification

We cannot prove E(‖u − ũ‖2) ≤ Cen(u)2 with the above strategy.

We miss the averaging property E(‖v‖2
2n) = ‖v‖2 for any v ∈ V .

Marcus-Spielman-Srivastava (2015) : if x1, . . . ,xm are m vectors from Rn of norm
|xi |

2 ≤ δ and such that

αI ≤
m∑
i=1

xix
T
i ≤ βI

then there exists a partition S1 ∪ S2 = {1, . . . ,m} such that

1 − 5
√
δ/α

2
αI ≤

∑
i∈Sj

xix
T
i ≤

1 + 5
√
δ/α

2
βI, j = 1, 2.

Nitzan-Olevskii-Ulanovskii (2016) apply this process recursively in order to identify a
J ⊂ {1, . . . ,m} such that |J | ≤ cn and

C−1αI ≤
∑
i∈J

xix
T
i ≤ CβI.

for some universal constant C > 1.



Randomized sparsified weighted least-squares

Cohen-Dolbeault (2021) : if the xi have equal norms |xi |
2 = n

m
, then iterative splitting

delivers for some L = O(ln(m/n)) a partition J1 ∪ J2 ∪ · · · ∪ J2L = {1, . . . ,m} such that

c0I ≤
∑
i∈Jk

xix
T
i ≤ C0I, k = 1, . . . , 2L,

with (c0,C0) universal constants and |Jk | ≤ C0n for all k.

Apply to xi =
(√

w(x i )
m

Lj (x
i )
)
j=1,...m

with Y = {x1, . . . , xm} the random boosted

sample with m ≥ 10n ln(4n).

Let κ be the random variable taking value k ∈ {1, . . . , 2L} with probability pk =
|Jk |
m

.

Define weighted least-square estimate ũ with random sample X = {x i ∈ Y : i ∈ Jκ}.

EX

( 1

#(X )

∑
x i∈X

w(x i )|v(x i )|2
)
= EY

( 1

m

m∑
i=1

w(x i )|v(x i )|2
)
≤ 2‖v‖2, v ∈ V .

This allows us to prove E(‖u − ũ‖2) ≤ Cen(u)2, with sample size |X | ≤ C0n.

Consequence : for any compact K ⊂ L2,

ρrandC0n
(K)L2 ≤ Cdn(K)L2 .



Summary

We can improve sparsity of the sample up to near-optimality m ∼ n.

This comes at the prize of computational feasability of the offline sample generation.

sampling
complexity

sample
cardinality m

offline
complexity

E(‖u − ũ‖2)
≤ Cen(u)2

‖u − ũ‖2

≤ Cen(u)2∞
conditionned
ρ⊗m |E

10n ln(4n) O(n3 ln(n)) 3 3

+ deterministic
sparsification

2n O(n4 ln(n)) 7 3

+ randomized
sparsification

C0n O(ncn)→ O(nr ) ? 3 3

Conflict between reducing sampling budget and limiting offline computational cost.

Haberstisch-Nouy-Perrin : cheap greedy sparsification but no theoretical guarantee.

Sparsification strategies do not seem to combine well with hierarchical sampling.



More general measurement models

Can we develop a similar sampling theory for other types of measurements

y i = `i (u), i = 1, . . . ,m,

where `i are linear forms of some particular type ? Examples :

- Local averages `i (u) =
∫
Rd u(x)ϕ(x − x i ),

- Fourier samples `i (u) =
∫
Rd u(x) exp(−iωi · x)

- Radon samples `i (u) =
∫
Li u(s)ds where Li are lines in R2,...

In all these examples, the linear forms are picked in a certain dictionnary where we
want to make an optimal selection.

This may be viewed as apply point evaluation after a certain transformation.

y i = `i (u) = Ru(x i ), x1, . . . , xm ∈ D,

where D is now the transformed domain. For example D = [0, π[×R for the Radon
transform on R2.



Optimal measurement selection in transformed space

We assume u 7→ Ru to be a “stable” representation of u for a Hilbert space V of
interest, in the sense that for a certain measure µ

‖u‖2
V =

∫
D
|Ru(x)|2dµ = ‖Ru‖2

L2(D,µ)
.

This is the case in all above examples.

For picking the approximation un ∈ Vn ⊂ V , we now solve

min
v∈Vn

m∑
i=1

w(x i )|y i − Rv(x i )|2.

The optimal sampling measure on the transformed domain is again defined by

dσ =
kn

n
dµ, kn(x) =

n∑
j=1

|Lj (x)|
2,

however with {L1, . . . , Ln} now an orthonormal basis of Wn := R(Vn).

With {x1, . . . , xm} picked according to this sampling measure and m ∼ n, we retrieve

E(‖u − un‖2
V ) ≤ Cen(u)

2
V , en(u)V = min

v∈Vn

‖u − vn‖V .



Choosing the error norm

Several possible choices of (V , µ) lead to different sampling strategies.

For the Fourier transform : V = Hs (Rd ) ⇐⇒ dµ(ω) = (1 + |ω|2s )dω.

For the Radon transform : taking dµ the Lebesgue measure,∫
D
|Ru(x)|2dµ =

∫
R

∫π
0
|Ru(t, θ)|2dtdθ =

∫π
0

∫
R
|û(teθ)|

2dsdθ ∼

∫
R2

|ω|−1|û(ω)|2dω.

This leads to a very weak error norm V = H−1/2(R2).

If we want to control the error in V = L2(R2), we have

‖u‖2
V ∼

∫π
0
|R(θ, ·)|2

H1/2(R)dθ.

Sobolev semi-norms may be viewed as weighted L2 norms after applying the finite
difference operator : for 0 < s < 1

|v |2Hs (R) =

∫
R×R

|v(t) − v(t ′)|2

|t − t ′|1+2s
dtdt ′ =

∫
R2

|V |2dµ, V (t, t ′) = v(t) − v(t ′).

Similar definitions for s ≥ 1 using higher-order finite differences.



Solving PDEs by least-squares minimization ?

Consider a PDE set in some physical domain D (could include time variable), in
general form

Ru(x) = 0,

where the residual Ru accounts for the PDE, boundary condition, intial condition...
For example Ru = (f + ∆u, (u − g)|∂D ).

Discrete least-square collocation methods : approximation un ∈ Vn defined by solving

min
v∈Vn

1

m

m∑
i=1

w(x i )|Rv(x i )|2.

Recently applied in the framework of DNN (Physics Informed Neural Networks,
Karniadakis-Mishra...) with unit weights and uniformly random or QMC points x i .

In the case of a residual of the form Ru = f −Au for some linear operator A, our
results suggest using the optimal sampling measure dσ = kn

n
dx and weight w = n

kn

where kn(x) =
∑n

j=1 |Lj (x)|
2 with {L1, . . . , Ln} an orthonormal basis of Wn := A(Vn)

What bothers me here : the L2 norm of the residual ‖Rv‖L2 is rarely a good way to
measure of the error u − v . Negative smoothness (dual) norms are often more natural,
for example H−1 in the case of the Laplace equation. But these norms cannot be
simply emulated by point evaluations.
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N. Nagel, M. Schäfer and T. Ullrich, A new upper bound for sampling numbers, 2020.

A. Cohen and M. Dolbeault, Optimal pointwise sampling for L2 approximation, 2021.


