L,-approximation based on

Gaussian information, function values

or other information

Mario Ullrich
JKU Linz & MCFAM Moscow

Sampling recovery workshop
Online, May 2021

Mario Ullrich Function values for L;-approximation



Introduction
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Motivation

We want to recover/approximate

a function f: D - R
(or some property of it) up to

a certain error € > 0,

where f is only known through

some pieces of information.
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During this talk ...

we consider
@ a measure space (D, A, u),
o Ly =Ly(D, A, n): the square-integrable functions w.r.t. u, and

@ a separable metric space F < Ly of functions on D.

For example:
e D=[0,1]9 or D =R or D =N, with arbitrary y, and

@ F is the unit ball of a separable normed space.

(F < L» means here that id: F — L, id(f) = f, is injective and compact.)
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Approximation

We want to “compute” an Ly-approximation of f € F based on a

finite (preferably small) number of information, because we ...

@ don't know f and we can only take some measurements, or

@ know f, but want to compress it because of computing issues.

What information is allowed,
and how important is this choice?

(The statement “f € F" can be seen as the a priori knowledge about f.)
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Information

Information of a function f € F is given by L(f) for some linear
functional L: F — R.

In general, we do not have access to arbitrary L € F' (=dual of F).

Instead, we have a class of admissible information A C F/, e.g.,

@ certain expectations of f,
o coefficients w.r.t. a given basis,

e function values: f(x) for x € D.
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Algorithms & error

For information (maps) Li,..., L, € A, we study linear algorithms:

for some ; € Ly. So, A, is specified by L;, ;.

We want to bound the worst-case error over F:

e(An, F) = sup Hf - A,,(f)‘
feF

Ly

(Several other settings are possible here. Linearity has advantages.)
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Minimal worst-case errors

We are interested in the (linear) sampling numbers

n
F):= _inf S Flx) o
GlF) = Mep g2 |F - L T00w]
P15--pn€L2 = Lo

i.e., the minimal error that can be achieved with n function values.

As a benchmark, we use the approximation numbers (linear width)

n
an(F) = inf sup |If — LiF) il
o(F) 1= |, f s |3 L)
©1,--,n€Ls = Ly

i.e., the minimal error that can be achieved with arbitrary info.
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How good are function values?

The a,’s are well understood, but the g,’s are harder to analyze.
We clearly have

an(F) < gn(F)

if point evaluation f +— f(x) is a continuous linear functional on F.

How large is the difference between g, and a,?
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Earlier results

Several specific, but only some general bounds were known before.

A negative result [Hinrichs/Novak/Vybiral 2008]

For any (a,) & (2, there exist F with a,(F) = a, for all n, but

1

gn(F) > M

for infinitely many n.

A positive result [Kuo/Wasilkowski/Wozniakowski 2009]
For unit balls of Hilbert spaces H with a,(H) S n™%, o > 1/2, we

have
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A very positive result

We now have this general result on the power of function values.

[Krieg/U 2019; U 2020; Krieg/U 2021]

Let F < Ly be a separable metric space of functions on D, such

that point evaluation is continuous on F.
Then, for every 0 < p < 2, there is a constant ¢, > 0, depending
only on p, such that, for all n > 2, we have

1/p

gn(F) < logn %Zak(F)p

k>n

for N > ¢, - n.

v

For unit balls of Hilbert spaces, p = 2 also works. [Nage! Schafer. T. Ullrich, 2020]
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In particular, ...

Corollary
If Fis such that
an(F) < n~log”(n)

for some @ > 1/2 and 8 € R, then we obtain

gn(F) < n~*log”/2(n).

Stated differently: If n~ (1)9, g < 2, (arbitrary) infos are enough

>
for an approximation with error € > 0, then

(7\/'%(1/5))(’ function values can do the same.

&€
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Original motivation

However, our original motivation was different. We wanted to know:

How special is optimal information?

To be precise, let us start with a discussion of optimal information.

In what follows, we use the notation

@ F — separable metric space

@ H — unit ball of a Hilbert space
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Hilbert spaces: Singular value decomposition

The a,(H)'s can be given (in theory) using the SVD:
If id: H — L is compact, there is an
orthogonal basis B = {bx: k € N} of H

that consists of eigenfunctions of id*-id: H — H. We have that

@ B is also orthogonal in L, and
e we assume || bj||, =1, and ||bi||y < [|b2o||H < ...

Then,
1

an(H) = ———.
H) = ol
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Optimal algorithm: projection

Using this notation, we have that

- .- <f7 bj>H
F=S (b, b =S ~21H
J'_Zl J/ L2 ~) J_Z]_ <bj7b_/>H J

converges in H for every f € H.

The optimal algorithm based on n linear functionals is given by

Po(f) = Y (. by)1, by,
j<n
which is the orthogonal projection onto

V, := span{bs,..., by}
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Optimal algorithm: error

We obtain that

satisfies

| bny1llL 1
an(H) = sup f— Pp(f = 2 = )
() = e = POl = G5 0 = Tl
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General classes: A “good” basis

It is not hard to show that similar holds true for general classes F:

Lemma

There is an orthonormal system {by: k € N} in Ly such that the
orthogonal projection P, onto the span V), = span{bs,..., b}
satisfies

sup [|f — Pafll, < 2a,/4(F), neN.
feF

@ This system is not known in general.
@ The 'n/4" might be problematic for rapidly decaying a,.

e From now on, {bx} will always be as above.
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Random information

Our attempt to study the “rarity” of optimal info was to ask:

How good is random information?

Recall that we are in the worst-case setting:

For given info, there is no randomness.
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Fixed information

To study “random” information, we first introduce

)

Ly

e(F,N,) := inf  sup
P1,¢n€la FeF

f—> Li(f) i
i—1

i.e., the minimal error that can be achieved by linear algorithms

based on the fixed info

Clearly,
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What is a good model for random info?

In the 'simple’ examples F C R™, m € N, it might be natural to
consider uniformly distributed info from the sphere

Li(f) = (F,y®),,  where y() Egm—1
Equivalently, we can consider Gaussian information

Li(f) =>_gjfj, where g S N(0,1).

The latter makes also sense for m = cc.
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A geometric formulation (m < o)

Assume that F C R™ is convex and symmetric. Then

e(F, Na) = sup{||f[l2: f € F, Ny(f) =0}.

In other words,

m=

e(F,N,) = rad(FNE), n=A
i.e., the radius of the intersec- iam (Fa E)
tion with a hyperplane E C R™ =9 md(%Ej

177

with codimension n (uniformly dis-

tributed on the Grassmannian).
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Ellipsoids aka. Hilbert spaces

Forl=01 >0y > ... >0 and n < m, consider

m f 2
H—{f—(ﬂ,...,fm)eR’": Z<1> gl}.

j=1\%
Optimal information is given by N (f) = (f,...,f,) and

an(H) = e(H,N;;) = opy1. s, /E

f
How good is Gaussian information Wg

Nn(f) = (Ll(f)7 ) Ln(f)) ?

To ease the presentation, we stick to the case m = oc.
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Gaussian info might be useless!

Theorem [Hinrichs/Krieg/Novak/Prochno/U 2018]

If o & ¢5, then, for Gaussian info N, we almost surely have

e(H, Nn) = 01.

Proof: Lete > 0.
@ A result of Kahane (1985) implies that N,(H) = R" a.s.
@ In particular, there is y € H with N,y = @Nnel.
@ Then x =01(1 —¢)e; — ey € F with N,x =0 and

]2 > x1 > o1(1 — 2¢).

@ Since +x cannot be distinguished, e(H, N,) > o1(1 — 2¢).
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Gaussian info might be optimal!

Theorem [Hinrichs/Krieg/Novak/Prochno/U 2018]
Let o € ¢5. Then, for Gaussian info N,, we have that

with probability at least 1 — e=" for some absolute constants c, C.

This is achieved by the algorithm A, = G* o N,,, where G is the

Moore-Penrose-inverse of G = (gjj)i<nj<k and k = n/2.

Note that G = Np|g«.
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Proof of the upper bound

Since A, = GTN, with G = N,|g«, we have that A,(f) = f for
f € R¥, if G has full rank. This holds with probability 1.

Then, for f € F, let Px(f) be the projection to R¥. We have
If = An(F)ll2 < [If = Pi(F)ll2 + [[An(F) = Pi(F)][2-
The first term is bounded by oy11. The second term satisfies
An(f) — Pe(f) = An(f — Pe(f)) = G' Tz,
with z = (i> and T = (0jgjj)i<nj>k € R, Since ||z]2 <1
i) >k Jouy)isn,y > . = 4

gj

1AR(F) = Pi(f)ll2 < 1IG*: €8 — 5| - |IT: £2 — £5]].
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Proof of the upper bound I

We have, for f € F, that
If = An(F)ll2 < osr + G2 05— £5]| - T2 Lo — £3].

The norm of G™ is the inverse of the smallest singular value of G
and roughly n=1/2. The norm of [ = (0jgij)i<nj>k is roughly

1 1/2
nt/? max{ <k Z 01-2) ,UkH}.

J>k

See e.g. [Davidson/Szarek 2001, Bandeira/Van Handel 2016].

(Note that G and I are independent random matrices.)
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Power of Gaussian information

)
Recall that H = {f = (A b ) €l 2 () < 1}.
For sequences (o;) of polynomial decay, we obtain the following.

Theorem [Hinrichs/Krieg/Novak/Prochno/U 2018]

Let o, < n~*log® n for some & > 0 and 3 € R.

Then, for Gaussian info N, and with a, := a,(H) = 041, we have

ag (=o01) for o &l

E[e(H, Nn)} = an for a>1/2,
an+/logn else.

Analogous estimates hold with high probability.
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How special is optimal information?

Although this is a very special setting, one may deduce the following

heuristic:

Q@ For (an) ¢ ¢2: Optimal information is rare.

@ For (a,) € ¢2: (Almost) optimal information is nothing special.

Does the latter imply that one can
restrict to smaller classes of information,

maybe even for more general problem classes?
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Function values

Recall the similar scenario for approximation using function values.

A negative result [Hinrichs/Novak/Vybiral 2008]
For any (a,) & (2, there exist F with a,(F) = a, for all n, but

1

&nl(F) = log log(n)”

for infinitely many n.

A positive result [Kuo/Wasilkowski/Wozniakowski 2009]

For unit balls of Hilbert spaces H with a,(H) S n™%, o > 1/2, we
have

gn(H) < nme T < no/?,
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Generalization

In order to generalize the methods from above to general F, let

o {bx: k € N} be a “good” basis for F C RP,

@ P, be the orthogonal projection onto V,, = span{bi, ..., by},
o N(f) = (Ll(f),...,LN(f)), NeN (and N: F = RV),

o G = (Li(h))ic cn ERVM (e G2 Ny,

o the algorithm
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Least squares

Note that this algorithm is a least squares estimator:

If G has full rank, then
N
An(f) = argmin Z |Li(f) — L,-(g)]2.
gevn i=1

It is linear and exact on V,,.

See the talk of Karlheinz & Albert for introduction and discussion.

Mario Ullrich Function values for L,-approximation



Function values
[e]e]e] Yolo)

Least squares for function values

It is a classical for Li(f) = f(x;), xi € D, to study
weighted least squares methods:

N
An(f) = argmin Y dj[g(x;) — f(x)|?
gEVh =1

for some weigths d; > 0, x; € D and V,, = span{by, ..., b,} C Ls.

The analysis often boils down to the study of quantities depending

on

> bi(x))? and (f — Ppf)(x).
k=1

There are many approaches: See talks of Albert, Tino and Volodya.
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Least squares: our approach

To compare g,(F) and a,(F), we consider

N
An(f) = argmin Z M

g€ Z i=1 Q(Xi)

with o: D — R,

11
o(x) 3:2< SO 1b(X)P + > wic|bi(x) )
n
k<n k>n
for some sequence (wy), s.t. p is a u-density, and choose
Xty XN S p - d.
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The general result

Theorem [Krieg/U 2021]

Let Fo C La(i) be a countable set and xi, ..., xy id p-du.

Then, for every 0 < p < 2, there is a constant ¢, > 0, depending
only on p, such that, for all n > 2, we have

1/p

1
e(An, Fo) < | =) a(Fo)?
n k>n

for N> c,nlog(n) with probability at least 1 — %

(For unit balls of Hilbert spaces, p = 2 also works. [Krice/V 2019])
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The proof

The first important insight is that Ay can be written as

n

An(F) = S (GTN(F)), b,
k=1

where N: Fp — R" with N(f) = (g(x,-)_l/2f(x,-)> N is the

weighted information mapping and
Gt € R™N is the Moore-Penrose inverse of the matrix

Q(Xf) i<N,j<n
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The proof Il

Again, since Ay is exact on V), we obtain

I = Anfllp, < IIf = Paflly, + [1Paf = Anfll,
an+ | GTN(F = Pof)|

IN

IN

ant |Gt~ 05

INCE = Paf) g
and hence
e(An, Fo) = sup [|If — An(f)l|L,
feFy

< ap +5min(G)_1 sup ||N(f - P”f)||£N7
feFy 2

where sy,i, denotes the smallest singular value.
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The proof Il

e(An, Fo) < an+ smin(G) ™ sup [[N(f — Paf)| o ,
fEFo 2

We will show that

Fact 1:  suin(G: 05 = ¢Y) > VN

1 1/p
Fact 2:  sup [N(f — Pof)lly < /nlogn <n > aZ)

feFy k>n

for N~ ¢, nlog(n) simultaneously with high probability.
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The proof: main tool

Proposition [Oliveira 2010, Mendelson/Pajor 2006]

Let X be a random vector in C¥ with || X||2 < R with probability 1,
and let X1, X2, ... be independent copies of X. Additionally, let

E := E(XX*) satisfy | E|| < 1, where ||E|| denotes the spectral
norm of E. Then, for all t > %

‘|

Note that the bound is dimension-free.

§X,~X-*—N.E > N-t] < 4N — t).
2 H = )‘ exp( 32R2)
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The proof of Fact 1

Let X; := o(x;)"Y2(b1(xi), - .., ba(xi)) T with x; ~ p. Then, we have

N N o, ]
Z XiX,'* — G*G — <Z bJ(X’) bk(X’)> c Ran
i=1 J,k<n

= olx)
and E = E(XX*) = diag(1,...,1), i.e,, ||[E|| = 1. Moreover,

1X12 = o) 3 bi(x)2 < 2n = R?,
k<n

since

Mario Ullrich Function values for L,-approximation



Function values
oe

The proof of Fact 1

With t = £ and N = [Cinlog n], we obtain

P(/1G*G — NE|| > g) < %

if the constant C; > 0 is large enough. We obtain

=2

Smin(G)? = smin(G*G) > smin(NE) — |G*G — NE|| > 5

with probability at least 1 — %.
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The proof of Fact 2: Decomposition

With fp := {n2¢ 4+ 1,...,n2%1}, £ >0, and the random matrices

_ n £
Fe:= (Q(Xi) l/Zbk(Xi)>i<N kel e R,

and f := ((f, bk)1, )kel,» we obtain that

< D MTes L2(le) = 657 | ellxga
o £=0

>

=0

INGE — oty 2

<2 Z Hrg: 62(/@) — E?H an2£_2(F0)
£=0

for all f € Fy.
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The proof of Fact 2: individual blocks

For fixed ¢, let X; := 0(x;) ™/?(bi(xi)) k), With X ~ p. We have

N N
Z XiX,'* —_ rz rz — (Z bJ (X’) bk(X’) > c ané x n2¢
i=1 i=1 Q(Xi) j.kel

and E = E(XX*) = diag(1,...,1), i.e., ||[E|| = 1. Moreover,

_ 2
X015 = o(xi)™2 > |b(xi)? < = R,

kel, Wnat+1

since

1 w,
o(x) = 3 3 wlbe(x)]? = =25 37 [b(x)I.
kelg kel[
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The proof of Fact 2: union bound

With t ~ % and N = [Cynlog n], we obtain with

w, ¢ log(n

ITel? < m+||T3T, — mE|| that

4
2 2

for some By > V/£2! that is independent of n, N.

We obtain by a union bound that

P(IeNo: [T(lf* > Conlog(n) B2) < .
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The proof of Fact 2: some calculation

Hence,

IN(f = Paf)lly < n log(n ZBeanze Fo)
for all f € Fy with probability at least 1 — %

Monotonicity of (a,) gives

Zaz > n(2"—-1)a" ab

k>n
ol 1 1/p
for £ > 1 and thus a,,¢ < 27 /P(n > k>n af(’) .

We can choose suitable wy, By if p € (0,2), which finishes the proof.
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The proof of Fact 2: point-wise convergence

S

=0

It remains to verify ||N(f — P,,f)||££v @

2y
We implicitly use

(f — Paf)(x:) = > F(k) bi(x).
k>n

Rademacher-Menchov theorem

Let Fo be countable with 'Og(k) -ak(Fo) | € £2. Then, there is a
measurable subset Dy of D with ,u(D\ Do) = 0 such that

f(x) = Y (f,be), b(x)  forall xe Dy and f € Fo.
keN
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The proof: From countable to separable

F < Ly is a separable metric space with cont. point evaluation.

@ F contains a countable dense subset Fy

| = An(f)

< Jr-s

Lt Hg—A/v(g)HL2 +||An(f—g)

L2 L2

o Us(f):={g € F:de(f,g) <4} and § > 0 small enough

o g€ FNUs(f): |If—gll, <e and |f(x)—g(x)| <e
° Hf—AN(f) < sup g—AN(g)H + Ce
Ly geFy Ly
Hence,

e(An, F) = e(An, Fo) for every linear Ay.
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Downsampling

To finish the proof, we take n “good” out of n log n random points.
(This was done first by [Limonova/Temlykov 2020, NSU 2020].)

That is, for some J C {1,..., N}, we consider

| bk(x) an _ [ _fx)
Gy ._< Q(Xi)>ieJ,k<n d  Ny(f): ( @(Xi)>,-ej‘

Then, the (linear) algorithm A, := G N, uses only |J| function

values and satisfies

e(As, F) < an+ smin(Gy)™" sup ||Ny(f — P,f)

[J]
feFy H€2 ’
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Downsampling |l

For JC {1,...,N} and f € F, we have ||N,(f)|, < ‘|N(f)|’£§1
2
and hence

1

, 1/p
E Z ak> .

k>n

INSCF = Pa( )1 < < /nlogn (

It remains to find J C {1,..., N} with #J < cyn such that

smin(G)? > an.

2
Recall that Yw € C": % HGW'? < TN with high probability.
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Downsampling |ll

This is based on the following fascinating result.

Weaver's theorem [Weaver '04, MSS '15, NOU '16, LT '20, NSU '20]

There exist constants ¢, ¢, c3 > 0 such that, for all

ui,...,uy € C"such that ||u;f|3 <2n foralli=1,...,N and
1 N 3
§HW||2 Z w, uj) §||WHga w e C",
i=1

thereis a J C {1,...,m} with #J < ¢;n and

alwls < *Z! w,u)]> < aflwl3,  weC”
ied

(This is based on the famous solution of the Kadison-Singer problem.)
Mario Ullrich
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Finally...

Theorem [Krieg/U 2021]

Let F < Ly be a separable metric space of functions on D, such

that point evaluation is continuous on F, i.e., {0x: x € D} C F'.
Then, for every 0 < p < 2, there is a constant ¢, > 0, depending
only on p, such that, for all n > 2, we have

1/p

gn(F) < logn %Zak(F)p

k>n

for N> ¢, - n.

For more on the power of this 'downsampling’ see Tino's talk...
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My favorite example

A prominent example:

Sobolev spaces with (dominating) mixed smoothness.

Let D = T be the d-dim. torus, x = ) the Lebesgue measure
on T 1 < p < oo and s € N. We define

W3 = {f € Lo(T): |Iflws <1},

where
1/p

1 llwg = > DR

a€eNg: |afoo<s

So, f € W implies D*f € L, for all a € Ng with max; |a;| <'s.
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My favorite example Il

It is known that these well-studied spaces satisfy
o gn(W3) =< a,(W5) forp<2andalls>1/p.
° gn(W3) > ap(W3) < n* log*(“"Y(n) for p>2and s> 0.

° gy(Wp) S n° log(s+/2(d=1)(n)  for p>2and s > 1/2.

~

S [Sickel, T. Ullrich, 2007]

All the upper bounds are achieved by sparse grid

It was the prevalent conjecture that the upper bounds are sharp.
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My favorite example Il

For the spaces W3, the “good” ONB is given by {e*mik: k € 79},
i.e. the Fourier basis. Since ||b|lcc < 1, we can use p = 1.

Corollary [Krieg/U 2019, U 2020]

Let xi,...,x, be independent and uniformly distributed in T.
Then, for any s > 1/2,

e(AnW3) < an (W3) < n*log*(n)

log n

with probability at least 1 — %.

Nagel/Schifer/T. Ullrich 2020:  e,(W3) < n~*logs(d=D+1/2(p).
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An example
0000

Sparse grids vs. random point sets

w.hp.:  e(An, W3) < n°log*(n),

which is better than sparse grids for d > 2s + 1.

0.8 ® ®

Nl S .o
oo ooxg '.“.a...
]| %o 050 '!; o

02 04 06 0.8

What are optimal points?
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An example
0000e

Good point sets

Open problems:

@ Find an explicit construction of such point sets!

@ What are necessary/sufficient conditions?

Note: Lattices don't work. Nets?

~» We still don’t know enough about some of the easiest (general)

approximation problems in high dimensions...
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Other info
€000

Special information

In the above, there's nothing special about function values, and we

can do the same for other classes on information:

Given a class A C F’ of admissible information, let

an(F,N) :== inf e(F,Np,)

N,eN"

be the n-th minimal worst-case error of linear algorithms based on

optimal info from A.
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Other info
000

Special info: The result

Theorem [work in progress]

Let A C F’ be such that there exist a measure v on A with
[ 1n)-Eant) = (fe

forall f,g € F.
Then,

1/p
an(F,N\) < /logn (iZak(F)P>

forO<p<2and N>c,-n.

One obtains better bounds for more special info...
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Other info
[eYe] Yo

Special info: Example

Consider an arbitrary orthonormal basis

H:{hl,hg,...} OfLQ.

By choosing v to be the counting measure, we see

o0

[ cth)-cl@ydu(e) = Sorh) - Te.h) = (F.g)a

i=1

~> In this formulation, F does not appear at all.

~ Your favorite L,-basis gives almost optimal info if (a,) € /.
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Other info
oooe

Special info: The algorithm

For a given class of admissible info A C F’, and given

Cl,--.,cn €N, let

N lefe) o
An(f) = argmin » lci(g) = ci(F)?

geVh 1 Q(Cf)

with

k<n k>n

oA R olc) = (1 ECEDS wk|c(bk>|2> .
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Non-linear
000

Non-linear algorithms

One might want to consider arbitrary algorithms:

An(f) = ¥ (La(F),.. La(F)) € Lo
with some Li,...,L, € F’ and a (non-linear) mapping ¢: R" — L,.

Gelfand width:

Fi) = 0, s I = (L2 L)
Ly,...,Lhn€EN
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Non-linear
oe0

Non-linear algorithms Il

Let F be a unit ball of a Banach space.

Several results are known to compare these quantities:

Linear vs. non-linear: supg { i:gp} =/n
Linear vs. non-linear sampling: supg {%} =+/n

Lower bound for sampling:
gn(W2([0,1])) = en(Wr([0,1]), {dx}) = 1 fors <1.

See books of Novak/Wozniakowski 08-12 (Chapter 29), Pinkus etc.
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Non-linear
ooe

Non-linear algorithms Il

Since our result implies

1/p
gn(F) < V/logn (}72 (\/ECAF))P)

k>n

for N > ¢, - n, we also know what happens here in the “worst case":
For F a unit ball of a Banach space, we have for s > 1

nst2 < sup{g,,(F): F with ¢c,(F) < n_s} < logn - n~st1/2
and for s <1

sup{g,,(F): F with ¢,(F) < n_s} =1
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Final remarks

@ We have a quite complete picture of the power of function

values, if we only assume some decay on (a,) or (cp).

e What about other (general) assumptions? (See e.g. Jan's talk)

Is the /log(n)-factor needed?

Can non-linear algorithms do “better”?

Again: What are good point sets?
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Thank you!

ion values for approximation



History: The simplex

B{":{XER’"

m
> oIl < 1}-
j=1

Theorem (Kashin, Garnaev, Gluskin)

Consider the recovery of vectors from B" in the Euclidean norm

with Gaussian information. Then

E[e(B7, Ny)] = c(BI) = min{l, '°g(1n+m) }

An analogous estimate holds with high probability.

Although most of the information mappings yield optimal

information, not a single example is known explicitly.
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End
oo

The bound is achieved by the algorithm
Nm&ﬂi

An(x) = ©(Nn(x))

with the nonlinear mapping

e(y)=argmin %1
XERM: Np(%)=y

That is, we have

log(1 + ™
Ele(An, B")] = min{l, log(1 + ) }
n

It is known that linear algorithms are much worse. We have

m—n)l/2
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Why mixed smoothness?

Spaces with mixed smoothness are of interest (for numerics)

because they ...

@ are tensor products of univariate spaces.
@ correspond to several concepts of “uniform distribution theory”.

o reflect the independence of parameters in high-dimensional
models, like medical data, physical measurements etc.

@ are proven to be important for the electronic Schrédinger
equation. [Yserentant, 2005]
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