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‘ Introduction

Recovery of functions in finite-dimensional spaces
> Vm - Span{nl(')a 777m()} C L2(Da Q)v f c Vm
> (nk(-))i, ONS with respect to the measure o
» Goal: Stable and exact recovery of f € V,,, from given samples

f=(f(x), ., fxm)T
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‘ Introduction

Recovery of functions in finite-dimensional spaces

>
>
>

Vin = span{n1 (), .-, (")} C La(D, 0), f € Vin

(Me(-))7=, ONS with respect to the measure o

Goal: Stable and exact recovery of f € V,,, from given samples
f=(f(x) o f(x")T

Linear system

mx) ) e m(x) ¢ Fx

M) (X)) em fxm)
How to choose the nodes x!, ..., x™ and the oversampling n > m such that
the system matrix is well conditioned ?
Weighted least squares, change of measure, importance sampling, ....

Useful: Bounded orthonormal systems (BOS) like trigonometric
monomials, Chebychev polynomials, etc.
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‘ Introduction

Recovery of functions in finite-dimensional spaces
Problem studied by many authors in more or less specific situations

> Finite-dimensional spaces of multivariate trigonomeric/algebraic
polynomials: Doostan, Grochenig, lwen, Kammerer, Kunis, Krahmer,
Mhaskar, Nobile, Potts, Rauhut, Temlyakov, Tempone, Volkmer,
Ward, ....

» General situation: Cohen, Davenport, Leviatan, Migliorati, Adcock, ...

» Marcinkiewicz-Zygmund inequalities and sampling discretization in
L,(D, p): Dai, Shadrin, Tikhonov, Temlyakov + Lab People,

1 n
allfll < ~ MNP < eallfl
k=1

in case p = 2: the lines of the above matrix constitute a proper frame in C™
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‘ Introduction

Recovery of multivariate functions from RKHS

> Model: Reproducing kernel Hilbert space H(K) < Lo(D, op)
» Given: Samples f = (f(x!),..., f(x"))T of a f € H(K)
» Goal: Recover the function f from samples on X
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‘ Introduction

Recovery of multivariate functions from RKHS

> Model: Reproducing kernel Hilbert space H(K) < Lo(D, op)

» Given: Samples f = (f(x!),..., f(x"))T of a f € H(K)

» Goal: Recover the function f from samples on X

> Additional assumption: The sampling nodes X = (x!,...,x") should
work for a class of functions simultaneously

» We aim for controlling the worst-case error for a sampling recovery

operator Sx : H(K) — Lo

sup  |If = Sxfllr.(p.0)
1f 1 2y <1
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‘ Introduction

Recovery of multivariate functions from RKHS

vvyyvyy

v

>

>

Model: Reproducing kernel Hilbert space H(K) < Lo(D, op)
Given: Samples f = (f(x!),..., f(x"))" ofa f € H(K)
Goal: Recover the function f from samples on X

Additional assumption: The sampling nodes X = (x!,...,x") should
work for a class of functions simultaneously

We aim for controlling the worst-case error for a sampling recovery
operator Sx : H(K) — Lo

sup  |If = Sxfllr.(p.0)
1f 1 2y <1

Information based complexity: How well can we perform compared to
general linear samples?

Sampling numbers vs. approximation numbers
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Introduction

Weaver subsampling
It is known:
> General situation: n = O(mlogm) random samples

» In case of trigonometric polynomials n = O(m?) deterministic rank-1
lattice points

Sampling Recovery - May 7, 2021 - Tino Ullrich 7/60


7/60

‘ Introduction

Weaver subsampling
It is known:
> General situation: n = O(mlogm) random samples
» In case of trigonometric polynomials n = O(m?) deterministic rank-1
lattice points
Reduce sampling budget to O(m)

» Using the celebrated solution of Kadison-Singer via Weaver’s conjecture
(2004, Discr. Math.)

» Nitzan, Olevskii, Ulanovskii, 2016: Exponential frames on unbounded
sets, Proc. Amer. Math. Soc.

» Solution of Kadison Singer Problem:
Marcus, Spielman, Srivastava, 2015: Interlacing families II: Mixed
characteristic polynomials and the Kadison-Singer problem. Ann. of Math.

» Forerunner to Kadison Singer solution
Batson, Spielman, Srivastava, 2014: Twice Ramanujan Sparsifiers,
SIAM Review
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‘ Introduction

Outline

1. Kadison-Singer and Finite Frames
2. Reducing the sampling budget

3. Model Setting

4. Random Matrices

5. Recovery with high probability

. Weaver Subsampling in RKHS

. An outstanding open problem

. Sampling and Approximation Numbers

© o ~N o

. Outlook
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Introduction

Kadison Singer and Finite Frames
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‘ Kadison-Singer and Finite Frames

Frames and Riesz sequences

» Let H be a Hilbert space.
> A Bessel sequence is a sequence (f;);cs in H, such that there is a

constant C' > 0 with
S UL P <Clfl?

iel
forall f € H.
» A Frame is a sequence (f;)ier in H, such that there are constants C,c > 0
with
cdlFIP < DKL P <Ol
iel
forall f € H.

> A Riesz sequence is a sequence (f;);ecr in H, for which there are constants
¢,C >0, such that

ey lail? <

icl

2
<CY aif?

icl

> aifi

icl
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‘ Kadison-Singer and Finite Frames

The Kadison Singer problem; Framework

vvyyvyy

v

Motivated from Quantum Mechanics Dirac 1947

H = ¢5(N) Hilbert sequence space over C.

B = L(H) the space of bounded, linear operators H — H.

D C B the space of diagonal operators (which forms a closed, unital
C*-subalgebra).

A state is a continuous, linear functional ¢ : ® — C, such that

(i) ¢(I) =1 (normalization);
(i) @(P) > 0 for all positive operators P € D (positivity).

Set of all states S C D’ in the dual space of D is convex, hence S C D' is
the convex hull of its extreme points.

Extreme points are called pure states, i.e. these are states, that cannot be
written as a proper convex combination of at least two other states.
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‘ Kadison-Singer and Finite Frames

Extension of pure states

» Hahn-Banach = state ¢ on © can be extended to 8.
> Kadison-Singer Problem 1959: Is the extension of a pure state unique?

Theorem (Marcus, Spielman, Srivastava; 2015; Weaver 2004;

Akemann, Anderson 1991)
Answer: YES

» It suffices to show: An extension of a pure state is zero, when evaluated on
selfadjoint operators with zero-diagonal. It turned out that the following
would be helpful.
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‘ Kadison-Singer and Finite Frames

Theorem (Anderson’s Paving Conjecture 1991)

For every € > 0 there is an r € N with the following property:

For every selfadjoint T € C™*™ with zero-diagonal, there are coordinate
projections P, ..., P,, such that ;| P; = I and |P;TP;| < ¢|T)| for all
1=1,..,r.

» Note, that the projections themself depend ond T, while the number of
projections depends only on . One even has the bound r < 136/¢*.

» This can be pulled up to infinite matrices, from which one can deduce
Kadison-Singer.

» Several equivalent formulations:

Kadison Singer <= Anderson Paving <= Weaver K S;-conjecture <
Feichtinger conjecture
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‘ Kadison-Singer and Finite Frames

What exactly did MSS prove?

Theorem (Marcus, Spielman, Srivastava '15)

Let e >0 and vy, ...,v,, € C™ be independent random vectors with finite

support such that
m
Z Ev,vi =1
i=1

and E||vi||? < ¢ for all i, then P( S vy
i=1

rg S (1+ \/5)2) > 0.
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‘ Kadison-Singer and Finite Frames

What exactly did MSS prove?

Theorem (Marcus, Spielman, Srivastava '15)

Let e >0 and vy, ...,v,, € C™ be independent random vectors with finite

support such that
m
Z Ev,vi =1
i=1

and E||vi||? < ¢ for all i, then P( S vy
i=1

2§(1+\/E)2)>0.

2—

Let r € N and let uy, ..., u,, € C" be vectors fulfilling ||u;||3 < ¢ for all i and

Z wu; =1L
i=1
Then there exits a partition {51, ...,.S,} of [m] such that

2w 252 = (1/\/7:+ \/5)2

€S
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‘ Kadison-Singer and Finite Frames

Theorem (Weaver's K Sy-conjecture, Marcus Spielman Srivastava
2015)

There are universal constants n > 2 and 6 > 0, such that the following holds:
Let vy, ..., vy, € C™ be unit vectors (i.e. ||v;|| =1 in the euclidean norm for all
i=1,...,m) and suppose

> w, vi) 2 = nlw|

=1

for all w € C™ (n-tight frame). Then there is a partition [m| = S1USs, such that

Y w,vi)l? < (n—0)[wl®

i€S;
for all w € C™ and j = 1,2 (frames with frame bounds 6 and n —6).

Note that 6 is only determined by 7. An “isotropic collection” of vectors can be
decomposed into two sets which are “approximately isotropic”.
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Explicit and quantitative version
Theorem (Nitzan, Olevskii, Ulanovskii 2016)

Lete >0 and vy, ..., vy, € C™ with ||v;]|> < € and suppose
pp

Dl vi) 2 = fwl?

for all w € C™ (n-tight frame). Then there is a partition [m| = S1USs, such that

(14 v/2¢)?
Z [(w, Vi)l < =g wl

for all w € C™ and j = 1,2. In the case € < 1 we therefore have

3 . val? < TE2VE e

1€ES;
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Explicit and quantitative version
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3 . val? < TE2VE e
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‘ Kadison-Singer and Finite Frames

Back to the recovery problem

» Goal: Stable and exact recovery of f € V,,, from given samples
f=(f(x) o f(x")T

» Linear system

mx) ma(xt) e mm(x?) ¢ F(x

M) ) e () em £

v

Goal: Reduce the sampling budget to O(m)

v

Random points and “change of measure” give n = O(mlogm)

v

Example: trigonometric polynomials with frequencies in index set I C R?
Vr :span{exp(ik~x) ke I} , |Il=m

O(mlogm) random samples or n = O(m?) samples from rank—1 lattice...
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‘ Reducing the sampling budget

Apply MSS inductively

Theorem (Nitzan, Olevskii, Ulanovskii 2016; Limonova, Temlyakov

'20; Nagel, Schafer, T. Ullrich' 20)

Let ki, ky, k3 >0 and uy,...,u, € C™ with ||u;[|3 < k1™ foralli=1,...,n and

n
kallwll3 < D I(ww)? < ksfwll; . weC™.
=1

There always exists J C {1,...,n} with |J| < ¢1 - m such that

m m
co ;HWII% <> lwu) P < e ;IIWII% , weCm,
/ Z ,
K1k

k
where ¢ = 1642k—1, co = min{ks, (2+ V2)%k1}, c3 = 1642 .t
2 2

In its original NOU: ||u;||3 = n/m, tight frame and-no explicit constants
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‘ Reducing the sampling budget

Application to the recovery problem

» Denote the row vectors of L,, by uy,...,u,:
———u; - —— m(x') ma(x') o pe(x)
: e : : :
———u, ——— mx") np(x") oo m(x")
u m.
> {\/ﬁ, f} constitutes a frame in C

1 1 2 3
SIWIE < ~||Lmw| < Slwl
—_————

m
— (after change of measure)

» Further, forall i € {1,...,n} H
n
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‘ Reducing the sampling budget

» We can apply Weaver's theorem with k1 = 2, ko = % ks = %
> |t yields a subset J C {1,...,n} and corresponding sampling points
J:=(...,x),...)jes with |J| € O(m) such that

1 2
clwll3 < —||ILymwl|| < Clwl3
m 2

for the following submatrix of L,,:

Ly = | m&) n(x?) - npn(x?) =l -—-u -

jed : jeJ
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‘ Reducing the sampling budget

Three-step procedure

» Change of measure —> Random draw — Weaver subsampling

NIE

\Wk(X)\Q-
) = nk()/ v em(+)

> 1. Step: Change measure, use density: g,,(x) := %

>
Il
_

—~

Consequence: new system of orthonormal functions 7
~ m
with N (m) = sup,, 3 [ = m
k=1

> 2. Step: Random draw of n = O(mlogm) points with respect to measure
om(X)dop(x). This constitutes a good initial frame with bounded rows

> 3. Step: Weaver subsampling of the weighted matrix D, - L,, with

D,,, = diag(1/v/om(x1), ...; 1/v/ 0m(x™))

Instead of solving
L, -c~f

we solve
(ng ~Lm) -ex=D, -f
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Model Setting

Model Setting: RKHS
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‘ Model Setting

Reproducing kernel Hilbert space

» Problem setting by Wasilkowski, Wozniakowski, Journ. FoCM, 2001
» Domain D C R¢ equipped with measure o
» K(x,y) Hermitian positive-definite kernel on D x D

f&x) =/ K(.x)nwx) (feH(K) xeD)
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‘ Model Setting

Reproducing kernel Hilbert space

» Problem setting by Wasilkowski, Wozniakowski, Journ. FoCM, 2001
» Domain D C R¢ equipped with measure o
» K(x,y) Hermitian positive-definite kernel on D x D

fx) =/, K(-x))ux) (f€H(K), x¢€D)
» Finite trace condition

K(x,x)dp < cc.
D
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‘ Model Setting

Reproducing kernel Hilbert space

» Problem setting by Wasilkowski, Wozniakowski, Journ. FoCM, 2001
» Domain D C R¢ equipped with measure o
» K(x,y) Hermitian positive-definite kernel on D x D

f&x) =/ K(.x)nwx) (feH(K) xeD)

Finite trace condition

v

K(x,x)dp < cc.
Hilbert-Schmidt embedding b
Idg,: H(K) — L2(D, 0)

v
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‘ Model Setting

Reproducing kernel Hilbert space

>
>
>

Problem setting by Wasilkowski, Wozniakowski, Journ. FoCM, 2001
Domain D C R? equipped with measure o
K(x,y) Hermitian positive-definite kernel on D x D

fx) = ({,K(.x)uwx) (f€H(K), x€eD)
Finite trace condition
K(x,x)dp < cc.
Hilbert-Schmidt embedding b
Idg,: H(K) — L2(D, 0)

Idg,, is compact and its singular values 0, > 03 > 03 > ... >0 are

square-summable
(o]
}: 2
Uk < 00
k=1

(Condition “necessary” for this setting: Erich’s lecture)

Sampling Recovery - May 7, 2021 - Tino Ullrich 24/60


24/60

‘ Model Setting

Reproducing kernel Hilbert space

> Idg , : H(K) — Lao(D, p) has the following representation

Idk o(f) = ng<f, k) H(K) Nk

k=1
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‘ Model Setting

Reproducing kernel Hilbert space

» Idgk,: H(K) — L2(D, o) has the following representation

Idk o(f) = Zﬂk<f, k) H(K) Nk

k=1

> 0, >0y > 03> ...2>0 are the singular values of Idg ,.
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‘ Model Setting

Reproducing kernel Hilbert space

» Idgk,: H(K) — L2(D, o) has the following representation

Idk o(f) = Zﬂk<f, k) H(K) Nk

k=1
> 0, >0y > 03> ...2>0 are the singular values of Idg ,.

» {er}ren and {n;}ren are the right resp. left singular functions

{ek}keN is an ONS in H(K) : <€j;6k>H(K) = 04,k
{me}ren is an ONS inLa(D,0) © (0, Mk) Lo(D.0) = Ok
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‘ Model Setting

Reproducing kernel Hilbert space

» Idgk,: H(K) — L2(D, o) has the following representation

Idk o(f) = Zﬂk<f, k) H(K) Nk

k=1

> 0, >0y > 03> ...2>0 are the singular values of Idg ,.

» {er}ren and {n;}ren are the right resp. left singular functions

{ek}keN is an ONS in H(K) : <€j;6k>H(K) = 04,k
{me}ren is an ONS inLa(D,0) © (0, Mk) Lo(D.0) = Ok

> Since Idg , is the identity on functions

€k = 0k " Tk

Sampling Recovery - May 7, 2021 - Tino Ullrich 25/60


25/60

‘ Model Setting

How to approximate?

Algorithm 1 Weighted least squares approximation

Input: X = (x',...,x") € D" matrix of distinct sampling nodes,
f=(f(xH, ..., fx™")NT samples of f evaluated at the nodes,
meN m<n

Compute weighted samples
Om (Xj) = 07

T, wi = 0, . )
g = (g;)j=1 with g; {f(xj)/ fom(X3),  om(x) #0.

Least squares matrix

. {0 (xa)_o O
" ne(x7)/\/om(x7),  om(x)) #0,

Output coefficients:

(@15 eensm) = (L Lnn) " Lo - &
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‘ Model Setting

A concrete example
> Function spaces with mixed derivative H”, (T9) in Ly(T¢)

(fs9)mr = Z (DY f,DDg)p ray.
je{o,r}d
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‘ Model Setting

A concrete example
> Function spaces with mixed derivative H”, (T9) in Ly(T¢)

(fs9)mr = Z (DY f,DDg)p ray.
je{o,r}d

> D=TI=[0,1]¢, do(x) = dx
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‘ Model Setting

A concrete example
> Function spaces with mixed derivative H”, (T9) in Ly(T¢)

(fs9)mr = Z (DY f,DDg)p ray.
je{o,r}d

> D=TI=[0,1]¢, do(x) = dx
> r> %
w(k) = (L+ 2nlk)*)V2 kel

exp(27ik(y — x))
K’rl‘(z7y) ::Z w (k)g ’ I7y€Ta
keZ "
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‘ Model Setting

A concrete example
> Function spaces with mixed derivative H”, (T9) in Ly(T¢)

(fs9)mr = Z (DY f,DDg)p ray.
je{o,r}d

> D=TI=[0,1]¢, do(x) = dx
> r> %
wy(k) = (1+ 2nlE)™M)Y2 | keZ

1 o exp(2mik(y — z))
K’r‘(z7y) *Z wr(k)Q ’ ‘T7y€Ta
keZ
Kﬁl(x,Y) = K&(xlayl)(@@K;(xd,yd) ) X,yGTd,
» Singular numbers o, = (1/w,(ky)), (non-increasing rearrangement)
> e, (x) = op exp(2miky, ), Mn(x) = exp(27mik,,)
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‘ Model Setting

The “smooth” hyperbolic cross

' ‘ » Special case p = ¢ =2

d
I 1Er =D R TR

keZ =1

» Hyperbolic cross projection

P’Hn — Z f(k)eQﬂ-z'kw
keH,
> Error: || — Py, flls <0

‘ » Cost: m :=1{ grid points in H,
» Rate: m " (logm)d-1r

A
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‘ Model Setting

Matrix formulation of the recovery error

» Error analysis:

sup | f = SRfIL, <sup|lf — Poufl7, +supllSK (S — Puf)ll,

Nl ey <1
2 U!llax(q)m)2
S O-m,Jrl + Umin<Lm)2
» Least squares matrix:
mx') m(x') e pm(xh)
L, =Lxm:=
mx") m(x") o pm(x")
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‘ Model Setting

Matrix formulation of the recovery error

» Error analysis:

sup | f = SRfIL, <sup|lf — Poufl7, +supllSK (S — Puf)ll,

Nl ey <1
2 U!llax(q)m)2
S O-m,Jrl + Umin<Lm)2
» Least squares matrix:
mx') m(x') e pm(xh)
L, =Lxm:=
mx") m(x") o pm(x")

» Remainder: Infinite matrix

eerl(Xl) em+2(xl)
(p’m, = @X,'m, =

emt+1(X")  empa(Xx")
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Model Setting

> We want to construct sampling nodes X = (x!,...,x™) probabilistically
such that
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Model Setting

> We want to construct sampling nodes X = (x!

such that

,...,X") probabilistically

m(x')  me(xt) o p(xt)
> ... Omin(Ly,) is large for L, = : :
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Model Setting

> We want to construct sampling nodes X = (x!,...,x™) probabilistically

such that
m(xt) ma(xt) o p(xt)
» ... 0min(Ly,) is large for L,, = : f .
M) M) ()
€m+1(X ) €m+2(X )
> ... Umax(q)m) is small for (I)m
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Model Setting

> We want to construct sampling nodes X = (x!,...,x™) probabilistically
such that
mx") ne(x') o mm(xh)
> ... Omin(Ly,) is large for L, = : : :
mx") ne(x") M (X™)

> ... Omax(®y) is small for ®,, =

» Previous work on this subject, e.g.

Krieg, M. Ullrich '19
Cohen, Migliorati 16

Cohen, Davenport, Leviatan ’'13
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Random Matrices

Random Matrices
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‘ Random Matrices

> X = (x!,...,x") is drawn i.i.d. at random.
» Random matrix
mx)  mxh)e nm(xh)
Ly = : : :
mx") mp(x") e N (x7)
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‘ Random Matrices

> X = (x!,...,x") is drawn i.i.d. at random.
» Random matrix
mx)  mxh)e nm(xh)
Lo=| 5 5
mx") mp(x") e N (x7)

» Structure: Rows i.i.d. and />-bounded by “inverse Christoffel function”

— oup z e

xED
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‘ Random Matrices

> X = (x!,...,x") is drawn i.i.d. at random.
» Random matrix

mxh) m(xt) e mm(x)
L — . . .

M) ) (")

» Structure: Rows i.i.d. and />-bounded by “inverse Christoffel function”

— oup z e

xED

» Random matrix

emi1(x')  emia(x!)

emt+1(X")  empa(Xx")
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‘ Random Matrices

> X = (x!,...,x") is drawn i.i.d. at random.

» Random matrix

mE) mxt) e (x)
Lo=| : 5 5
mE") m(x") e (x7)

» Structure: Rows i.i.d. and />-bounded by “inverse Christoffel function”

— oup z e

xED

» Random matrix

emi1(x')  emia(x!)
,, = - :

emt+1(X")  empa(Xx")

» Structure: Rows i.i.d. and #/»-bounded
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‘ Random Matrices

Random matrices

» Take independent samples according to p.
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‘ Random Matrices

Random matrices

» Take independent samples according to p.
» Then

(1) =B} Xy et) =1
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‘ Random Matrices

Random matrices

» Take independent samples according to o.
» Then

(1) =B} Xy et) =1

» Further

IE( ) ) ( Zz ®z):diag(a§l+1,(f%@+2,...) = Ay
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‘ Random Matrices

Random matrices

» Take independent samples according to o.

» Then
B(Gutn) =B(; Yoy er) =1
» Further
IE( ) ) ( Zz ®z ) = diag(02, 41,0049, ---) =t Am
> Recall Ur2nin(Lm) = )‘min(L:ian)
rznax(q)m) = )‘max(@;knq)m)
>
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‘ Random Matrices

Matrix Chernoff (Tropp)

Theorem (Tropp 2010)

For a finite sequence (Ay) of independent, self-adjoint, positive semi-definite
random matrices with dimension m satisfying Amax(Ag) < R almost surely it
holds

¢ Fmin
R

P{omn(5780) =0 ) 2 )

t Emax
R

P (b (344) = 1+ ) < (i)

for t € [0,1] where fimin = Amin (X ey EA%) and fimax := Amax (O pey EAR).

Apply With: fimin = pmax =1, t =1/2, R=N(m) = Y |ni(x)|?
k=1
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‘ Random Matrices

Infinite matrices

Proposition (Moeller, T. Ullrich 2020)

Lety® i =1...n, be i.i.d random sequences from ly. Let furthern >3, M > 0
such that ||z*||a < M for all i =1...n almost surely and Ez' ® z' = A for

t=1,....,n. Then

1 < ) 1
(|7 0n Al >max A2, 2r52 M2} ) < 2Bt
w = 252 -

» Complements earlier results by Rauhut, Pajor, Mendelson, Rudelson,
Oliveira...

» Focus here on infinite random matrices, but also valid for random vectors
of fixed finite length

» Proof based on non-commutative Khintchine inequality (Buchholz)
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Recovery with high probability

Recovery with high probability
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‘ Recovery with high probability

New sampling measure

» Importance sampling: Sample more densely, where samples are more
relevant.

~»  Modify the dpo(x) on D with an appropriate density function.

e First approach due to Cohen, Migliorati '16 (weighted least squares,
change of measure)
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New sampling measure

» Importance sampling: Sample more densely, where samples are more
relevant.

~»  Modify the dpo(x) on D with an appropriate density function.
e First approach due to Cohen, Migliorati '16 (weighted least squares,
change of measure)

» Krieg, M. Ullrich '19 suggested the density

ent9 =3 (3 2y woof + =g 22 )
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New sampling measure

» Importance sampling: Sample more densely, where samples are more
relevant.

~»  Modify the dpo(x) on D with an appropriate density function.
e First approach due to Cohen, Migliorati '16 (weighted least squares,
change of measure)

» Krieg, M. Ullrich '19 suggested the density

ent9 =3 (3 2y woof + =g 22 )
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‘ Recovery with high probability

New sampling measure

» Importance sampling: Sample more densely, where samples are more
relevant.

~»  Modify the dpo(x) on D with an appropriate density function.

e First approach due to Cohen, Migliorati '16 (weighted least squares,
change of measure)

» Krieg, M. Ullrich '19 suggested the density

Om(X) := ;(; ; s (x)|2 + D kbema1 €r (X)) )

Zi’imﬂ 01%

» New sampling measure

dom(x) := om(x) - do(x)
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‘ Recovery with high probability

Weighted least squares

Trick: Instead of solving
L, -c~f

we solve with D, = diag(1/+y/0m(x!), ..., 1/v/ om(x™))

(D,,, -Ly) -&¢~D,, -f

m

and

oo
N(m)~m , T(m)~ Z or.
k=m+1

= n ~ mlogm ! Similar behavior as for bounded orthonormal systems.
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Recovery with high probability

» M. Ullrich '20: high probability version based on Oliveira’s spectral
concentration result
» Direct consequence of our new infinite matrix concentration result above...
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‘ Recovery with high probability

» M. Ullrich '20: high probability version based on Oliveira’s spectral
concentration result

» Direct consequence of our new infinite matrix concentration result above...
Theorem (Moeller, T. Ullrich 2020)

Let K be a positive definite kernel such that H(K) is separable and
Jp K(x,x)do(x) < co. Let n € N and

Then it holds

_ 15 & _
P( sup ||If = SK Sl apon) S — D Ui) 2130,
1F 1Ly <1 M i \mr2)

where x', i = 1,...,n, are sampled independently according to the measure
m(x)dop(x) .
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Weaver Subsampling in RKHS

Weaver Subsampling in RKHS
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‘ Weaver Subsampling in RKHS

Apply Weaver subsampling to RKHS

» Random approach requires O(mlog(m)) samples for a reasonable
approximation (= least squares system matrix L,,, with mlogm rows
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‘ Weaver Subsampling in RKHS

Apply Weaver subsampling to RKHS

» Random approach requires O(mlog(m)) samples for a reasonable
approximation (= least squares system matrix L,,, with mlogm rows

» We can “shrink” the matrix L,, to O(m) lines
= Weaver subsampling, see also Sparsification, etc.
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‘ Weaver Subsampling in RKHS

Apply Weaver subsampling to RKHS

» Random approach requires O(mlog(m)) samples for a reasonable
approximation (= least squares system matrix L,,, with mlogm rows

» We can “shrink” the matrix L,, to O(m) lines
= Weaver subsampling, see also Sparsification, etc.

> Instead of operator §;’g we use the operator S, where J refers to the
relevant samples
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‘ Weaver Subsampling in RKHS

Apply Weaver subsampling to RKHS

» Random approach requires O(mlog(m)) samples for a reasonable
approximation (= least squares system matrix L,,, with mlogm rows

» We can “shrink” the matrix L,, to O(m) lines
= Weaver subsampling, see also Sparsification, etc.

> Instead of operator §;’g we use the operator S, where J refers to the
relevant samples

> Consequence: There exists a node subset of size O(m) such that

~ log(m)
s If =S5l py S C— D o

Il rey <1 k=|cm|

—> We produce an additional /logm

Sampling Recovery - May 7, 2021 - Tino Ullrich 41/60


41/60

‘ Weaver Subsampling in RKHS

Apply Weaver subsampling to RKHS

>

>

>

Random approach requires O(mlog(m)) samples for a reasonable
approximation (= least squares system matrix L,,, with mlogm rows

We can “shrink” the matrix L,, to O(m) lines
= Weaver subsampling, see also Sparsification, etc.

Instead of operator §;’g we use the operator S, where J refers to the
relevant samples

Consequence: There exists a node subset of size O(m) such that

~m log(m) <=
sup  |If — ST f 30 p.ey < C > i
111 e () <1 M e llem)

—> We produce an additional /logm
The constants C, ¢ > 0 are universal and determined explicitly!
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‘ Weaver Subsampling in RKHS

Weaver subsampling again

Theorem (Nitzan, Olevskii, Ulanovskii 2016; Limonova, Temlyakov

'20; Nagel, Schafer, T. Ullrich' 20)

Let ki, ky, k3 >0 and uy,...,u, € C™ with ||u;[|3 < k1™ foralli=1,...,n and

n
kallwll3 < D I(ww)? < ksfwll; . weC™.
=1

There always exists J C {1,...,n} with |J| < ¢1 - m such that

m m
co ;HWII% <> lwu) P < e ;IIWII% , weCm,
/ Z ,
K1k

k
where ¢ = 1642k—1, co = min{ks, (2+ V2)%k1}, c3 = 1642 .t
2 2

In its original NOU: ||u;||3 = n/m, tight frame and-no explicit constants
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‘ Weaver Subsampling in RKHS

Application: Weaver subsampling

» Denote the row vectors of im by ui,...,uy,:
———up - —— mxt)  mpx) e Am(x!)
=L, = : :
——-u, - (") 72(x") T (")
g uy, i in Cm-
> {\/ﬁ,..., \/ﬁ} constitutes a frame in C™:
1 1= 2 3
Sl < || B < S lwl3
n
u; 2
w’
>l 22
2 N
» Further, for all i € {1,...,n}: H o (m) <2.
Vnll2 n n

43/60
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Weaver Subsampling in RKHS

> We can apply Weaver's theorem with k1 = 2, ky = 1, ks = 1.
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Weaver Subsampling in RKHS

> We can apply Weaver's theorem with k1 = 2, ky = 1, ks = 1.
> |t yields a subset J C {1,...,n} and corresponding sampling points

J:=(...,x7,...)jes with |J| € O(m) such that

111~
cllwllf < —|Lymw| < Cllwll3
m 2
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‘ Weaver Subsampling in RKHS

> We can apply Weaver's theorem with k1 = 2, ky = 1, ks = 1.

> |t yields a subset J C {1,...,n} and corresponding sampling points
J:=(...,x7,...)jes with |J| € O(m) such that

111~
cllwllf < —|Lymw| < Cllwll3
m 2

for the following submatrix of Ly:

Lo = [ () () - iin(x) =|-——w-—

Jjed ' JjeJ

Sampling Recovery - May 7, 2021 - Tino Ullrich 44/60


44/60

‘ Weaver Subsampling in RKHS

> We can apply Weaver's theorem with k1 = 2, ky = 1, ks = 1.
> |t yields a subset J C {1,...,n} and corresponding sampling points
J:=(...,x7,...)jes with |J| € O(m) such that

111~
cllwllf < —|Lymw| < Cllwll3
m 2

for the following submatrix of Ly:

Ly = | () fp(x) o fi(x7) =|-—-u - ——
jeJ : jes

> Modify sampling recovery operator: Take (weighted) samples at the
points J := (..., x7,...) e (operator Ly) and use (weighted) least squares
for reconstruction (operator (ZJ)m)T), ie.,

S?Sn = (Z‘],m)Jr OEJ
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‘ Weaver Subsampling in RKHS

Error analysis
» For f € H with ||f||z <1 we have
n ((T)J,m)

~ g
1f = S5 fl 2, (D) < Tmgr + 5=
’ U?nin(Lan)
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‘ Weaver Subsampling in RKHS

Error analysis

» For f € H with ||f||z <1 we have

-
17 =5 s < s + S5 20
> Note
() 2 @am) < 02n(@)
(i) oZLam)Zcom & o2 (L) > 2
> (i) is due to
clluwlly < —||Eamu]| < Cllwl
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‘ Weaver Subsampling in RKHS

Error analysis

» For f € H with ||f||z <1 we have

S 2 (P3,m)
_ Sm 2 < 2 + O max ~J,m .
If J f||L2(D,g) S O0mta Ugﬁn(le)
> Note
(I) 0'12113)(((1)377") < Umax((l)m)
(i) oZLam)Zcom & o2 (L) > 2
> (i) is due to
11~ 2
clluwlly < —||Eamu]| < Cllwl
» Altogether
1f =S5 117, (p.0) S ||f %12 (p,0) S log(mIlf = SR F11Z,(0,0)
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‘ Weaver Subsampling in RKHS

Main result
Theorem (Nagel, Schafer, T. Ullrich 2020)

Let H(K) be a separable reproducing kernel Hilbert space on a set D C R¢
with

/DK(X, x)dop(x) < 0.

Let further (o1,)72, denote the sequence of singular numbers of the Hilbert
Schmidt embedding. Then for each m > 2 there exists a set of sampling nodes
{x!, ..., x"} with

n < 6568 - m

such that

~m logm
sup  ||f — SR, (p.g < 114 > op. 2)
1711 ¢y <1 M e
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‘ Weaver Subsampling in RKHS

The “smooth” hyperbolic cross

' ‘ » Special case p = ¢ =2

d
I 1Er =D R TR

keZ =1

» Hyperbolic cross projection

P’Hn — Z f(k)eQﬂ-z'kw
keH,
> Error: || — Py, flls <0

‘ » Cost: m :=1{ grid points in H,
» Rate: m " (logm)d-1r

A
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‘ Weaver Subsampling in RKHS

Sparse grids

Sparse grid, d = 2, N = 256

4 1 l

. (] . . . [
[ .
%—ooooooo e o o o o o o
[ L[]
. [ . . . .

% 1 0000000000000000000000000000000
(] .
. (] . . . .
[ ] L[]

Blm

Ni- $§e0eeceeces000000000000000000000 0

A . —
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An outstanding open problem

» Function spaces with mixed derivative H”. (T9) in Ly(T9), d € N,r > 1/2

mix
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utstanding open problem

» Function spaces with mixed derivative H”. (T9) in Ly(T9), d € N,r > 1/2

mix
d—1)r

> o, = n"(logn)( , Determinstic approach:

gn( T LQ(Td>) <r,d n—r(logn>(d—1)(r+1/2) (3)

mix? ~
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‘ An outstanding open problem

» Function spaces with mixed derivative H”. (T%) in Ly(T?), d € N,r > 1/2

d—1)r

> o, = n"(logn)( , Determinstic approach:

In(His La(T?)) Sra n™" (log n) =D +1/2) 3)
» Probabilistic approach without Weaver subsampling:

g (T, Lo(T)) Sroa n™" (logm) @ D7+7

mix? ~
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‘ An outstanding open problem

T9) in Ly(T9), d € N,r > 1/2
, Determinstic approach:

» Function spaces with mixed derivative
d—1)r

mIX(

> o, = n"(logn)(
In(His La(T?)) Sra n™" (log n) =D +1/2) 3)
» Probabilistic approach without Weaver subsampling:

(Hr7r‘1|x7

L2 (Td)) Sr,d n—r(log n)(d—l)r+7-

> Improvement over (3) in range 1 < r < 41
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‘ An outstanding open problem

» Function spaces with mixed derivative H”. (T%) in Ly(T?), d € N,r > 1/2

o = n~"(logn)@=17 Determinstic approach:

v

9n(Hpy Lo(T?)) Spa ™" (logn)( @ DH/2) 3)

v

Probabilistic approach without Weaver subsampling:

g (T, Lo(T)) Sroa n™" (logm) @ D7+7

mix? ~

> Improvement over (3) in range & < r < 451,

v

Probbilistic approach with Weaver subsampling:

nfr(log n)(dfl)r Sﬂ‘,d gn( T LQ(Td)) <r,d nfr(logn)(dfl)erl/Z

mix> ~
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‘ An outstanding open problem

» Function spaces with mixed derivative H”. (T%) in Ly(T?), d € N,r > 1/2
» o, =n"(logn)@1" Determinstic approach:

In(His La(T?)) Sra n™" (log n) =D +1/2) 3)
» Probabilistic approach without Weaver subsampling:

g (T, Lo(T)) Sroa n™" (logm) @ D7+7

mix? ~

> Improvement over (3) in range & < r < 451,
» Probbilistic approach with Weaver subsampling:

0" (10g 1)V <1 g (Hies La(T%) Sra ™" (log m) =741/

mix> ~

> Improvement over (3) forall r > %, d > 2.

Sampling Recovery - May 7, 2021 - Tino Ullrich 49/60


49/60

‘ An outstanding open problem

Preasymptotics
Theorem (Kiihn, Sickel, U. '15)

Letr >0,deNand1<m< %4% Then

62 ) 2+1gg2 d

o (i), Lo(T4) < (=

> Extended by Kiihn to the whole range of m (see also Krieg '18)
» Further extension by Kiihn, Sickel, U. to anisotropic mixed smoothness
r= (Tla ceey Td)

In case 7 > 4 + 2log, d the new upper bound on sampling numbers gives a
preasymptotic bound for sampling

< C(4+2logd) ( 1 )27‘/(2+10g2 d)

— §m|2 A rTee —
1f x||L2 =9 —4_2logd ogm
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utstanding open problem

=== f(m) = m™" (log m){@-1r
Praasymptotics

;ix’L2)
—

om(
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Sampling and Approximation Numbers

Sampling and Approximation
Numbers
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Sampling and Approximation Numbers

» n-th approximation number a, measures the minimal worst-case error for
recovery from n linear measurements

(7% H(K)aLQ(Dag) = lnf i H L
( ) L1y, Ln€H(K) HfHH<K><1 Z
©1,-- 7gpn€L2(D

Lz(D’Q)
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est] Sampling and Approximation Numbers

VERSITAT

» n-th approximation number a, measures the minimal worst-case error for
recovery from n linear measurements

an(H(K), Ly(D,0)) = inf |1 ZL
Li,....Ln€H(K)' Hf\IH<K><1
o1, ,@neLa(D 0)

Lz(D’Q)

» Approximation numbers a,, coincide with the singular numbers o,, of
the embedding Id : H(K) — La(D, o).
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Sampling and Approximation Numbers

» n-th approximation number a, measures the minimal worst-case error for
recovery from n linear measurements

an(H(K), Lo(D, 0)) := inf H
Li,....Lo€H(K) HfHH(K><1
o1, ,@neLa(D 0)

ZL

» Approximation numbers a,, coincide with the singular numbers o,, of
the embedding Id : H(K) — La(D, o).

» n-th sampling number g, measures the minimal worst-case error for
recovery from n function samples

Lz(D’Q)

gu(H(K),Ly(D,0)) = inf | Zf
x .., x"€D HfHH(K)<1 '
©1,--,pn€L2(D,0)

“NLa(D,e)
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Sampling and Approximation Numbers

» n-th approximation number a, measures the minimal worst-case error for
recovery from n linear measurements

an(H(K), Ly(D,0)) = inf |1 ZL
Li,....Ln€H(K)' HfHH(K><1
o1, ,@neLa(D o)

Lz(D’Q)

» Approximation numbers a,, coincide with the singular numbers o,, of
the embedding Id : H(K) — La(D, o).

» n-th sampling number g, measures the minimal worst-case error for
recovery from n function samples

gn(H(K)vLZ(Dvg)) = 1 lIlf H
x',....x"€D HfHH(K)<1
©1,--,pn€L2(D,0)

_Zf

“NLa(D,e)

» Clearly

On = Cp = an(H(K)aLQ(Da Q)) < gn(H(K)aLQ(Da Q))
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‘ Sampling and Approximation Numbers

A new upper bound for sampling numbers

Theorem (Nagel, Schafer, T. Ullrich 2020)

H(K) as above, K has finite trace, (01)%2, denotes the (non-increasing)
sequence of singular numbers of the associated compact embedding
Idg,, : H(K) — Lo(D, o).
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‘ Sampling and Approximation Numbers

A new upper bound for sampling numbers

Theorem (Nagel, Schafer, T. Ullrich 2020)

H(K) as above, K has finite trace, (01)%2, denotes the (non-increasing)
sequence of singular numbers of the associated compact embedding
Idg,, : H(K) — Lo(D, p). Then g,, := gn(Idk,,) satisfies the general bound

n
k>cn

with two universal constants C,c > 0, which can be specified explicitly.
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‘ Sampling and Approximation Numbers

A new upper bound for sampling numbers

Theorem (Nagel, Schafer, T. Ullrich 2020)

H(K) as above, K has finite trace, (01)%2, denotes the (non-increasing)
sequence of singular numbers of the associated compact embedding
Idg,, : H(K) — Lo(D, p). Then g,, := gn(Idk,,) satisfies the general bound

n
k>cn

with two universal constants C,c > 0, which can be specified explicitly.

Improvement over (Krieg, M. Ullrich "19):

log(n)
2 2
9n = c n Z Ok

k>cn/log(n)
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‘ Sampling and Approximation Numbers

A further related result...
» Let D C R? be compact and equipped with probability measure o.
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‘ Sampling and Approximation Numbers

A further related result...

» Let D C R? be compact and equipped with probability measure o.
> Kolmogorov numbers (n € N), F C L,(D, g) centrally symmetric
compact subset

n
dn(F, Ly) := inf sup  inf Hf - E cil
ULy Un €L, fEF C1,...,cn €C P

Ly(D,0)
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‘ Sampling and Approximation Numbers

A further related result...

» Let D C R? be compact and equipped with probability measure o.
> Kolmogorov numbers (n € N), F C L,(D, g) centrally symmetric
compact subset

Ly(D,0)

n
dn(F, Ly) := inf sup  inf Hf - E cil
ULy Un €L, fEF C1,...,cn €C P

Theorem (Temlyakov '20)

Let F be a compact subset of C(D). There exist two constants C,c > 0

gen(F, Ly) < Cdn(F,Los)  (neN).
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‘ Sampling and Approximation Numbers

A further related result...

» Let D C R? be compact and equipped with probability measure o.
> Kolmogorov numbers (n € N), F C L,(D, g) centrally symmetric
compact subset

Ly(D,0)

n
dn(F, Ly) := inf sup  inf Hf - E cil
ULy Un €L, fEF C1,...,cn €C P

Theorem (Temlyakov '20)

Let F be a compact subset of C(D). There exist two constants C,c > 0

gen(F, Ly) < Cdn(F,Los)  (neN).

» see: Temlyakov On optimal recovery in Lo, Journ. of Complexity
Limonova, Temlyakov On sampling discretization in Lo,
arXiv:2009.10789, 2020
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‘ Sampling and Approximation Numbers

A further related result...

» Let D C R? be compact and equipped with probability measure o.
> Kolmogorov numbers (n € N), F C L,(D, g) centrally symmetric
compact subset

d,(F,L,):= inf  sup . Hf Zcz i

ULy un €Ly ng e, ,cn Ly(D,0)

Theorem (Temlyakov '20)

Let F be a compact subset of C(D). There exist two constants C,c > 0

gen(F, Ly) < Cdn(F,Los)  (neN).

» see: Temlyakov On optimal recovery in Lo, Journ. of Complexity
Limonova, Temlyakov On sampling discretization in Lo,

arXiv:2009.10789, 2020
> Cohen, Migliorati '17: g, 1081 (F, L2) < Cdy(F, Loo) whp
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Sampling and Approximation Numbers

Outlook
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QMC nodes

Digital net, d = 2, N = 256
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Outlook

Frolov nodes

Image of the /e -ball Resulting Frolov points

-0.5

-1 -0.5 0 0.5 1

Kacwin, Oettershagen, M. Ullrich, T.UlIrich
https://ins.uni-bonn.de/content/software-frolov

Sampling Recovery - May 7, 2021 - Tino Ullrich 58,/60


58/60

‘ Outlook

Partial random quadrature nodes

R 1/2
> H"(T%), space with norm ( Zd w(k)2|f(k)|2) < 00
kezZ

Theorem (Bartel, Kimmerer, Potts, T. Ullrich '21)

Let H™ be as above, I C I' C Z% be frequency index sets and
X = {x!,....,xM}, (A1, ..., \ar) the nodes / weights of a quadrature rule being
exact on D(I'). Let further

1] <

(4)

hold true. Drawing X,, = (x!,...,x") i.i.d. from X with respect to the discrete
density weigths \;, we have with probability larger than 1 — 4n'~

8r log n

sup_[|f - 5¥s

£l e <1 ’ L (T4)

< Ssub e |1|Z swp_ || - fH ,T9)

kg1 W( HfHHwSI
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Random nodes

hyperbolic cross with 37 frequencies

3nlogn 3n

TR T R T | B Y e e
R S R I A A Folele Lot 1]

» 333 nodes » 95 nodes
> ||F*F — I||; ~ 0.81631 > ||F*F — I||; ~ 0.92028



Equispaced nodes

hyperbolic cross with 37 frequencies

n? 3nlogn 3n

i

» 1023 nodes » 333 nodes » 95 nodes
> [[F*F — 12 ~ > |[F*F =12~ > [[F*F — 1|2 =~
0.0000 0.5884 0.8330



Sobol nodes

hyperbolic cross with 37 frequencies

» 1023 nodes
> ||[F*F — 1|2 =~
0.09794

3nlogn

P B A A P PO B S

TR T T T

NI IR A AT

» 333 nodes
> ||[F*F — 1|z =
0.59935

3n

LI B R I B

T T T 1 T

el

» 05 nodes
> ||[F*F — 1|, ~
0.81752



Frolov nodes

hyperbolic cross with 37 frequencies

» 1023 nodes
> ||[F*F — 1|2 =~
0.05439

3nlogn

IS SRS L

T T m T T T

RIS SR T B T

» 333 nodes
> ||[F*F — 1|z =
0.53356

3n
B R R
- \.'\ | \ Ly
» 95 nodes
> |[F*F — I, ~
0.72624



Fibonacci lattice

hyperbolic cross with 37 frequencies

» 087 nodes
> ||[F*F — 1|2 =~
0.00000

3nlogn

I TR T T

\\\\\\\\T

\\\}\}\L\'

» 325 nodes
> ||[F*F — 1|z =
0.60443

3n

F

1

SN N R

\L\-\'\-H'\\

» 94 nodes
> ||[F*F — 1|, ~
0.83077
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