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Trigonometric polynomials. Dirichlet kernel.

Functions of the form

t(x) =
∑
|k|≤n

cke
ikx = a0/2 +

n∑
k=1

(ak cos kx + bk sin kx)

are called trigonometric polynomials of order n. The set of such
polynomials we denote by T (n).

The Dirichlet kernel of order n

Dn(x) :=
∑
|k|≤n

e ikx = e−inx(e i(2n+1)x − 1)(e ix − 1)−1

=
(
sin(n + 1/2)x

) /
sin(x/2).
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Interpolation

Denote
x j := 2πj/(2n + 1), j = 0, 1, ..., 2n.

Clearly, the points x j , j = 1, . . . , 2n, are zeros of the Dirichlet
kernel Dn on [0, 2π].

Consequently, for any continuous f

In(f )(x) := (2n + 1)−1
2n∑
j=0

f (x j)Dn(x − x j)

interpolates f at points x j : In(f )(x j) = f (x j), j = 0, 1, ..., 2n.
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Error of interpolation

It is easy to check that for any t ∈ T (n) we have In(t) = t. Using
this and the inequality∣∣Dn(x)

∣∣ ≤ min
(
2n + 1, π/|x |

)
, |x | ≤ π,

we obtain
‖f − In(f )‖∞ ≤ C ln(n + 1)En(f )∞,

where En(f )p is the best approximation of f in the Lp norm by
polynomials from T (n).
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The de la Vallée Poussin kernels

V2n(x) := n−1
2n−1∑
k=n

Dk(x) =
cos nx − cos 2nx

n(sin(x/2))2
.

The de la Vallée Poussin kernels Vn are even trigonometric
polynomials of order 2n − 1 with the majorant∣∣Vn(x)

∣∣ ≤ C min
(
n, 1/(nx2)

)
, |x | ≤ π.

Consider the following recovery operator

Rn(f ) := (4n)−1
4n∑
j=1

f
(
x(j)

)
Vn
(
x − x(j)

)
, x(j) := πj/(2n).

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



The de la Vallée Poussin kernels

V2n(x) := n−1
2n−1∑
k=n

Dk(x) =
cos nx − cos 2nx

n(sin(x/2))2
.

The de la Vallée Poussin kernels Vn are even trigonometric
polynomials of order 2n − 1 with the majorant∣∣Vn(x)

∣∣ ≤ C min
(
n, 1/(nx2)

)
, |x | ≤ π.

Consider the following recovery operator

Rn(f ) := (4n)−1
4n∑
j=1

f
(
x(j)

)
Vn
(
x − x(j)

)
, x(j) := πj/(2n).

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



The de la Vallée Poussin kernels

V2n(x) := n−1
2n−1∑
k=n

Dk(x) =
cos nx − cos 2nx

n(sin(x/2))2
.

The de la Vallée Poussin kernels Vn are even trigonometric
polynomials of order 2n − 1 with the majorant∣∣Vn(x)

∣∣ ≤ C min
(
n, 1/(nx2)

)
, |x | ≤ π.

Consider the following recovery operator

Rn(f ) := (4n)−1
4n∑
j=1

f
(
x(j)

)
Vn
(
x − x(j)

)
, x(j) := πj/(2n).

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Properties of Rn(f )

It is easy to check that for any t ∈ T (n) we have Rn(t) = t. Using
this and the above majorant we obtain

‖f − Rn(f )‖∞ ≤ CEn(f )∞.

What about error in the Lp, p ∈ [1,∞)? Let ε := {εk}∞k=0 be a
non-increasing sequence of non-negative numbers. Define

E (ε, p) := {f ∈ C : Ek(f )p ≤ εk , k = 0, 1, . . . }.
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Error of recovery

Theorem (VT, 1985)

Assume that a sequence ε satisfies the conditions: for all
s = 0, 1, . . . we have

∞∑
ν=s+1

ε2ν ≤ Bε2s , εs ≤ Dε2s .

Then for p ∈ [1,∞)

sup
f ∈E(ε,p)

‖f − Rn(f )‖p �
∞∑
ν=0

2ν/pεn2ν .

This theorem for 1 ≤ p ≤ 2 was proved in VT, 1985. A similar
proof works for other p.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Error of recovery

Theorem (VT, 1985)

Assume that a sequence ε satisfies the conditions: for all
s = 0, 1, . . . we have

∞∑
ν=s+1

ε2ν ≤ Bε2s , εs ≤ Dε2s .

Then for p ∈ [1,∞)

sup
f ∈E(ε,p)

‖f − Rn(f )‖p �
∞∑
ν=0

2ν/pεn2ν .

This theorem for 1 ≤ p ≤ 2 was proved in VT, 1985. A similar
proof works for other p.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Norms of operators

In the case of space C (p =∞) we have

‖Rn‖C→C ≤ C .

This allows us to obtain the inequality ‖f − Rn(f )‖∞ ≤ CEn(f )∞.

Operators Rn are not defined on Lp, when p <∞. What to do?
Historically, the first idea was to consider the operator RnJr where

Jr (f )(x) := (2π)−1

∫
T
f (x − y)Fr (y)dy ,

Fr (y) := 1 +
∞∑
k=1

k−r cos(ky − rπ/2).

It was proved in VT, 1985 that for r > 1/p we have (I is the
identity operator)

‖I − RnJr‖Lp→Lp ≤ C (r , p)n−r .
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Some inequalities

The following inequalities turns out to be more convenient. Denote

Vs(f )(x) := (2π)−1

∫
T
f (x − y)Vs(y)dy .

Then (VT, 1993) we have for s ≥ n

‖RnVs‖Lp→Lp ≤ C (s/n)1/p, 1 ≤ p ≤ ∞

and
‖InVs‖Lp→Lp ≤ C (p)(s/n)1/p, 1 < p <∞.
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Optimal recovery

For a fixed m and a set of points ξ := {ξj}mj=1 ⊂ Ω, let Φξ be a
linear operator from Cm into Lp(Ω, µ). Denote for a class F
(usually, centrally symmetric and compact subset of Lp(Ω, µ))

%m(F, Lp) := inf
linear Φξ; ξ

sup
f ∈F
‖f − Φξ(f (ξ1), . . . , f (ξm))‖p.

The above described recovery procedure is a linear procedure.

The following modification of the above recovery procedure is also
of interest. We now allow any mapping Φξ : Cm → XN ⊂ Lp(Ω, µ)
where XN is a linear subspace of dimension N ≤ m and define

%∗m(F, Lp) := inf
Φξ;ξ;XN ,N≤m

sup
f ∈F
‖f − Φξ(f (ξ1), . . . , f (ξm))‖p.

In both of the above cases we build an approximant, which comes
from a linear subspace of dimension at most m.
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Univariate smoothness classes

Define
W r

q := {f : f = Jr (ϕ), ‖ϕ‖q ≤ 1}.

Theorem (VT, 1993)

Let 1 ≤ q, p ≤ ∞ and r > 1/q. Then

%4m(W r
q , Lp) � sup

f ∈W r
q

‖f − Rm(f )‖p � m−r+(1/q−1/p)+ .

In the case 1 < p <∞ the above estimates are valid for the
operator Im instead of the operator Rm.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Univariate smoothness classes

Define
W r

q := {f : f = Jr (ϕ), ‖ϕ‖q ≤ 1}.

Theorem (VT, 1993)

Let 1 ≤ q, p ≤ ∞ and r > 1/q. Then

%4m(W r
q , Lp) � sup

f ∈W r
q

‖f − Rm(f )‖p � m−r+(1/q−1/p)+ .

In the case 1 < p <∞ the above estimates are valid for the
operator Im instead of the operator Rm.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Multivariate case. Classes

For r = (r1, . . . , rd) ∈ Rd
+) define

Jr(f )(x) := (2π)−d
∫
Td

f (x− y)Fr(y)dy,

Fr(y) :=
d∏

j=1

Frj (yj)

and
Wr

q := {f : f = Jr(ϕ), ‖ϕ‖q ≤ 1}.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Multivariate case. Classes

For r = (r1, . . . , rd) ∈ Rd
+) define

Jr(f )(x) := (2π)−d
∫
Td

f (x− y)Fr(y)dy,

Fr(y) :=
d∏

j=1

Frj (yj)

and
Wr

q := {f : f = Jr(ϕ), ‖ϕ‖q ≤ 1}.

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Recovery operators

Let for i = 1, . . . , d operator R i
n be the operator Rn acting with

respect to the variable xi . Denote

∆i
s := R i

2s − R i
2s−1 , R1/2 = 0,

and for s = (s1, . . . , sd) ∈ Nd
0

∆s :=
d∏

i=1

∆i
si
.

Consider the recovery operator (Smolyak operator)

Tn :=
∑

s:‖s‖1≤n

∆s.

Operator Tn uses m function values with
m�

∑n
k=1 2kkd−1 � 2nnd−1.
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First results

The following bound was obtained by S. Smolyak in 1960. Let
r = (r , . . . , r). In this case write Wr

q = Wr
q. Then

sup
f ∈Wr

∞

‖f − Tn‖∞ � 2−rnnd−1, r > 0.

It was extended to the case p <∞ in VT, 1985:

sup
f ∈Wr

p

‖f − Tn‖p � 2−rnnd−1, r > 1/p.

Open problem. Find the right order of the optimal sampling
recovery %m(Wr

p, Lp) in case 1 ≤ p ≤ ∞ and r > 1/p.
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Further results

We have (VT, 1993)

%m(Wr
2)∞ � m−r+1/2(logm)r(d−1), r > 1/2.

The order of optimal recovery is provided by the Smolyak
operator Tn.

Also we know (VT, 1993)

sup
f ∈Wr

q

‖f − Tn(f )‖∞ � 2−(r−1/q)nn(d−1)(1−1/q).

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Further results

We have (VT, 1993)

%m(Wr
2)∞ � m−r+1/2(logm)r(d−1), r > 1/2.

The order of optimal recovery is provided by the Smolyak
operator Tn. Also we know (VT, 1993)

sup
f ∈Wr

q

‖f − Tn(f )‖∞ � 2−(r−1/q)nn(d−1)(1−1/q).

Vladimir Temlyakov Sampling recovery. Lecture 1. Recovery in the Lp norms.



Useful inequalities

For s ∈ Zd
+ define

ρ(s) := {k ∈ Zd : [2sj−1] ≤ |kj | < 2sj , j = 1, . . . , d}

where [x ] denotes the integer part of x and

δs(f )(x) :=
∑

k∈ρ(s)

f̂ (k)e i(k,x).

Let an array ε = {εs} be given, where εs ≥ 0, s = (s1, . . . , sd), and
sj are nonnegative integers, j = 1, . . . , d .
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Notations

We denote by G (ε, q) and F (ε, q) the following sets of functions
(1 ≤ q ≤ ∞):

G (ε, q) :=
{
f ∈ Lq :

∥∥δs(f )
∥∥
q
≤ εs for all s

}
,

F (ε, q) :=
{
f ∈ Lq :

∥∥δs(f )
∥∥
q
≥ εs for all s

}
.
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Estimating ‖f ‖p

Theorem (VT, 1986)

The following relations hold:

sup
f ∈G(ε,q)

‖f ‖p �

(∑
s

εps 2‖s‖1(p/q−1)

)1/p

, 1 ≤ q < p <∞;

(1)

inf
f ∈F (ε,q)

‖f ‖p �

(∑
s

εps 2‖s‖1(p/q−1)

)1/p

, 1 < p < q ≤ ∞,

with constants independent of ε.
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Remark

Remark (Dinh Zung, 1991; VT, 1993)

In the proof of first relation of Theorem (VT, 1986) we used only
the property δs(f ) ∈ T (2s, d). That is, if

f =
∑
s

ts, ts ∈ T (2s, d),

then for 1 ≤ q < p <∞,

‖f ‖p ≤ C (q, p, d)

(∑
s

‖ts‖pq2‖s‖1(p/q−1)

)1/p

.
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H classes

For s ∈ N0 define the univariate operators

As := V2s − V2s−1 , V1/2 = 0

and for s = (s1, . . . , sd) ∈ Nd
0

As :=
d∏

i=1

Ai
si
.

Hr
p := {f : ‖As(f )‖p ≤ 2−r‖s‖1}.
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Recovery of H classes

Theorem (VT, 1985)

Let 1 ≤ p ≤ ∞ and r > 1/p. Then we have for f ∈ Hr
p

‖∆s(f )‖p � 2−r‖s‖1 and ‖f − Tn(f )‖p � 2−rnnd−1.

The above Theorem (VT, 1985), Theorem (VT,1986) and remark
to it imply:

Theorem (Dinh Zung, 1991; VT, 1993)

For any f ∈ Hr
q, 1 ≤ q < p <∞, r > 1/q

‖f − Tn(f )‖p � 2−n(r−β)n(d−1)/p, β := 1/q − 1/p.
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One more right order result

It easily follows from the definition of %m(F)p that
%m(F)p ≥ dm(F, Lp), where dm(F, Lp) is the Kolmogorov width.
The upper bound from Theorem (VT, 1985) and the lower bound
for the Kolmogorov width from VT, 1998: for d = 2

dm(Hr
∞, L∞) � m−r (logm)r+1

imply for d = 2

%m(Hr
∞)∞ � m−r (logm)r+1.
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Partial sums

For N ∈ N define the hyperbolic cross

Γ(N) := {k ∈ Zd :
d∏

j=1

max(|kj |, 1) ≤ N}

and the corresponding Dirichlet kernel

DN(x) :=
∑

k∈Γ(N)

e i(k,x).

Consider the hyperbolic cross partial sums

SN(f , x) := (2π)−d
∫
Td

f (y)DN(x− y)dy.
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Approximation

It is known that

sup
f ∈Wr

2

‖f − SN(f )‖2 � d|Γ(N)|(W
r
2, L2) � N−r .

For a point set ξ(m) = {ξν}mν=1 ⊂ Td consider a discretization of
the convolution operator SN

SN(f , ξ(m), x) :=
1

m

m∑
ν=1

f (ξν)DN(x− ξν).

How many points do we need to guarantee

sup
f ∈Wr

2

‖f − SN(f , ξ(m))‖2 � d|Γ(N)|(W
r
2, L2) � N−r? (2)

It is proved in VT, 1986 that it is sufficient to take
m � N2(logN)d−1 for (2) to hold. The proof uses number
theoretical constructions.
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Thank you!

Thank you!
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