
Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Robust and efficient identification
of neural networks

Sampling recovery and related problems
Lomonosov Moscow State University

May 2021

joint work with M. Fornasier (TU Munich)
and I. Daubechies (Duke)

Jan Vyb́ıral
Czech Technical University

Prague, Czech Republic

1/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Outline

• Approximation of multivariate functions

• Structural assumptions: active variables, SPAM’s, . . .

• Ridge functions - single neurons:
• Recovery algorithms
• Lower bounds

• Sums of ridge functions - one layer neural networks:
• Non-linear optimization
• Whitening
• . . .

2/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Classical task of approximation/sampling:
Given a function f with some properties (i.e. from some set) and
few its function values y1 = f (x1), . . . , yn = f (xn) generate a
function g , which is close to f in some sense.

Typically, the error (i.e. the distance of f and g) decays with n.
Well known for many classical function spaces, like Sobolev spaces,
Besov spaces, Triebel-Lizorkin spaces, etc.

Typical decay: n−s/d

Birman, Solomyak, Temlyakov, Kudryavtsev, Kashin, DeVore,
Maiorov, Cohen, Kruglyak, Heinrich, Novak, Triebel, Sickel, Ullrich
and many many others . . .

3/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Curse of dimension

Many classical problems suffer from exponential dependence of the
results on d!

Example: Approximation of smooth functions
Let Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ Nd

0}
Smoothness does not help!. . . ?!
Infinitely differentiable functions on Ω = [0, 1]d :

Novak, Woźniakowski (2009): Initial error is the same as error of
uniform approximation for n ≤ 2bd/2c − 1
. . . curse of dimension!
. . . the number of sampling points must grow exponentially in d

4/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Structural assumptions
• Active variables:
R. DeVore, G. Petrova, and P. Wojtaszczyk: Approximation of functions

of few variables in high dimensions, Constr. Appr. 2011:

f (x1, . . . , xd) := g(xi1 , . . . , xi`), `� N.

1-Lipschitz function f can be recovered uniformly with accuracy ε
from C (`)ε−` log2 d sampling points.

Use of low-rank matrix recovery:
H. Tyagi, V. Cevher, Learning non-parametric basis independent models

from point queries via low-rank methods, ACHA 2014

Revisited also in
K. Schnass, J.V., Compressed learning of high-dimensional sparse

functions, Proceedings of ICASSP ’11

S. Foucart, Sampling schemes and recovery algorithms for functions of

few coordinate variables, J. Compl. 2020
5/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Structural assumptions
• Sparse additive models: H. Tyagi and J. Vybiral: Learning

non-smooth sparse additive models from point queries in high

dimensions, Constr. Appr. 2019:

r0 = 1, f : [−1, 1]d → R

f (x) =
∑
j∈S1

φj(xj),

where x = (x1, . . . , xd) and S1 ⊂ {1, . . . , d} with |S1| � d

r0 = 2, f : [−1, 1]d → R

f (x) =
∑
j∈S1

φj(xj) +
∑

(j1,j2)∈S2

φ(j1,j2)(xj1 , xj2),

with S2 ⊂
({1,...,d}

2

)
and |S2| �

(d
2

)
6/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Ridge functions

Ridge functions
Let g : R→ R and a ∈ Rd \ {0}.
Ridge function with ridge profile g and ridge vector a is the
function

f (x) := g(〈a, x〉).

Constant along the hyperplane a⊥ = {y ∈ Rd : 〈y , a〉 = 0} and its
translates.

More general, if g : Rk → R and A ∈ Rk×d with k � d then

f (x) := g(Ax)

is a k−ridge function.

7/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Ridge functions in approximation theory

Approximation of a function by functions from the dictionary

Dridge = {%(〈k, x〉 − b) : k ∈ Rd , b ∈ R}
• Fundamentality

• Greedy algorithms

Lin & Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993),
no. 3, 295–311

Cybenko, Approximation by superpositions of a sigmoidal function, Math.
Control Signals Systems 2 (1989), 303–314

Leshno, Lin, Pinkus & Schocken, Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function, Neural
Networks 6 (1993), 861–867

8/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Ridge functions: Approximation algorithms

k = 1: f (x) = g(〈a, x〉), ‖a‖2 = 1, g smooth

Approximation has two parts: approximation of g and of a

Recovery of a - from ∇f (x):

∇f (x) = g ′(〈a, x〉)a,∇f (0) = g ′(0)a.

After recovering a, the problem becomes essentially
one-dimensional and one can use arbitrary sampling method to
approximate g .

g ′(0) 6= 0. . . g ′(0) = 1

9/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

A.Cohen, I.Daubechies, R.DeVore, G.Kerkyacharian, D.Picard, ’12
Capturing ridge functions in high dimensions from point queries

• k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)
• f : [0, 1]d → R
• g ∈ C s([0, 1]), 1 < s

• ‖g‖C s ≤ M0

• ‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1

• a ≥ 0a ≥ 0a ≥ 0

Then

‖f − f̂ ‖∞ ≤ CM0

{
L−s + M1

(
1 + log(d/L)

L

)1/q−1
}

using 3L + 2 sampling points

10/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

• First sampling along the diagonal
i
L1 = i

L(1, . . . , 1), i = 0, . . . , L :

f
(i
L

1
)

= g
(〈 i

L
1, a
〉)

= g(i‖a‖1/L)

• Recovery of g on a grid of [0, ‖a‖1]

• Finding i0 with largest g((i0 + 1)‖a‖1/L)− g(i0‖a‖1/L)

• Approximating Dϕj f (i0/L · 1) = g ′(i0‖a‖1/L)〈a, ϕj〉 by first
order differences

• Then recovery of a from 〈a, ϕ1〉, . . . , 〈a, ϕm〉 by methods of
compressed sensing (CS)

11/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Further results:

• M. Fornasier, K. Schnass, and J.V., Learning functions of few

arbitrary linear parameters in high dimensions, Found. Comput.

Math. (2012)

 Recovery algorithm for ridge functions on a ball

• A. Kolleck and J.V., On some aspects of approximation of ridge

functions, J. Appr. Theory (2015)

 Ridge functions on cubes and other topics

• S. Mayer, T. Ullrich, and J.V., Entropy and sampling numbers of

classes of ridge functions, Constr. Appr. (2015)

 Lower bounds, entropy numbers

• B.Doerr and S. Mayer, The recovery of ridge functions on the

hypercube suffers from the curse of dimensionality, J. Compl. (2021)

 Ridge functions on cubes, lower bounds

12/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Motivated by biological research on human brain and neurons
W. McCulloch, W. Pitts (1943); M. Minsky, S. Papert (1969)

13/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Artificial Neuron

. . . gets activated if a linear combination of its inputs grows over a
certain threshold. . .

• Inputs x = (x1, . . . , xn) ∈ Rn

• Weights w = (w1, . . . ,wn) ∈ Rn

• Comparing 〈w , x〉 with a threshold b ∈ R
• Plugging the result into the “activation function” - jump (or

smoothed jump) function σ

Artificial neuron is a function
x → σ(〈x ,w〉 − b),

where σ : R→ R might be σ(x) = sign(x) or σ(x) = ex/(1 + ex),
etc.

14/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Artificial neural networks
Artificial neural network is a directed, acyclic graph of artificial
neurons

• Input: x = (x1, . . . , xn) ∈ Rn

• First layer of neurons:
y1 = σ(〈x ,w1

1 〉 − b11), . . . , yn1 = σ(〈x ,w1
n1〉 − b1n1)

• The outputs y = (y1, . . . , yn1) become inputs for the next
layer . . . ; last layer outputs y ∈ R

15/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

M. Fornasier, J.V., I. Daubechies,
Robust and resource efficient identification of shallow neural networks
by fewest samples
to appear in IMA: Information and Inference

Recovery of

f (x) =
m∑
j=1

gj(〈aj , x〉)

- one layer of a neural network

• Special case of f (x) = g(Ax), but we would like to have m
onedimensional problems, and not one m-dimensional

• We would like to identify a1, . . . , am, then g1, . . . , gm

16/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

• Step 1.: Sampling of

∇f (x) =
m∑
j=1

g ′j (〈aj , x〉)aj

at different points gives elements of

A = span{a1, . . . , am} ⊂ Rd

• We sample (only) differences and obtain an approximation
Ã ∼ A, upper bound on ‖PA − PÃ‖F
• Ā - matrix, columns are a basis of Ã

• We consider

f̃ (y) =
m∑
i=1

gi (〈ĀTai , y〉) =
m∑
i=1

gi (〈ai , Āy〉)

17/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Recovery of individual ai ’s for d = m?

• Step 2.: Second order derivatives:

∇2f (x) =
m∑
j=1

g ′′j (〈aj , x〉)aj ⊗ aj

• Put
A = span{ai ⊗ ai : i = 1, . . . ,m} ⊂ Rm×m

• We can recover Ã ∼ A - an approximation of A

18/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

• Step 3.: We try to find matrices in Ã, which are close to
ai ⊗ ai ∈ A

• We look for matrices in Ã with the “smallest” rank

• We analyze the non-convex problem

(?) arg max ‖M‖, s.t. M ∈ Ã, ‖M‖F ≤ 1

• Every algorithm, which is able to find an approximation of
a1 ⊗ a1 can also land close to aj ⊗ aj , j = 2, . . . ,m, hence it
must be non-convex

19/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Analysis of (?):
- Let M be a local maximizer of (?)
- Eigenvalues λ1, . . . , λm, eigenvectors u1, . . . , um
- Then

uTj Xuj = λj〈X ,M〉 for every X ∈ Ã

and every j with |λj | = ‖M‖
- If a1, . . . , am are nearly orthonormal, then |λ1| = ‖M‖ is unique
and

2
m∑

k=2

(uT1 Xuk)2

|λ1 − λk |
≤ ‖M‖ · ‖X − 〈X ,M〉FM‖2F for all X ∈ Ã

second Hadamard variation formula

The Algorithm leads to â with ‖â− aj0‖2 small.

20/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Whitening: If ai ’s are not orthonormal, we consider (any) positive
definite

G =
m∑
i=1

ξiai ⊗ ai ∈ A

and its singular value decomposition

G = UDUT ,

then W := D−1/2UT is the so-called whitening matrix and
{
√
ξiWai : i = 1, . . . ,m} is an orthonormal basis.

Passive sampling: sampling points preselected at random from a
distribution with known density

Identification of gi ’s:
- (âj)

m
j=1 an approximation of (aj)

m
j=1

- (b̂j)
m
j=1 the dual basis to (âj)

m
j=1

- ĝj(t) := f (tb̂j).
21/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Figure: Average approximation error of 10 random networks with
m = 20, ε = 1 in terms of MSE (left), uniform norm (right). The errors
were measured over 105 datapoints generated uniform at random on the
ball Bd

1 .

22/23

Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Thank you for your attention!

23/23

	Introduction
	Ridge functions
	Neurons and neural networks
	Sums of ridge functions

