Ridge functions

Neurons and neural networks

Sums of ridge functions

Robust and efficient identification of neural networks

Sampling recovery and related problems Lomonosov Moscow State University

May 2021

joint work with M. Fornasier (TU Munich) and I. Daubechies (Duke)

Jan Vybíral

Czech Technical University Prague, Czech Republic

1/23

Ridge functions

Neurons and neural networks

Sums of ridge functions

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2/23

Outline

- Approximation of multivariate functions
- Structural assumptions: active variables, SPAM's, ...
- Ridge functions single neurons:
 - Recovery algorithms
 - Lower bounds
- Sums of ridge functions one layer neural networks:
 - Non-linear optimization
 - Whitening
 - . . .

Classical task of approximation/sampling:

Given a function f with some properties (i.e. from some set) and few its function values $y_1 = f(x_1), \ldots, y_n = f(x_n)$ generate a function g, which is close to f in some sense.

Typically, the error (i.e. the distance of f and g) decays with n. Well known for many classical function spaces, like Sobolev spaces, Besov spaces, Triebel-Lizorkin spaces, etc.

Typical decay: $n^{-s/d}$

0000

Birman, Solomyak, Temlyakov, Kudryavtsev, Kashin, DeVore, Maiorov, Cohen, Kruglyak, Heinrich, Novak, Triebel, Sickel, Ullrich and many many others ...

Ridge function

Neurons and neural networks

Sums of ridge functions

Curse of dimension

Many classical problems suffer from exponential dependence of the results on d!

Example: Approximation of smooth functions Let $\mathcal{F}_d := \{f : [0,1]^d \to \mathbb{R}, \|D^{\alpha}f\|_{\infty} \le 1, \alpha \in \mathbb{N}_0^d\}$ **Smoothness does not help!...?!** Infinitely differentiable functions on $\Omega = [0,1]^d$:

Novak, Woźniakowski (2009): Initial error is the same as error of uniform approximation for $n \le 2^{\lfloor d/2 \rfloor} - 1$... curse of dimension!

... the number of sampling points must grow exponentially in d

Structural assumptions

• Active variables:

R. DeVore, G. Petrova, and P. Wojtaszczyk: Approximation of functions of few variables in high dimensions, Constr. Appr. 2011:

$$f(x_1,\ldots,x_d):=g(x_{i_1},\ldots,x_{i_\ell}), \quad \ell\ll N.$$

1-Lipschitz function f can be recovered uniformly with accuracy ε from $C(\ell)\varepsilon^{-\ell}\log_2 d$ sampling points.

Use of low-rank matrix recovery:

H. Tyagi, V. Cevher, Learning non-parametric basis independent models from point queries via low-rank methods, ACHA 2014

Revisited also in

K. Schnass, J.V., Compressed learning of high-dimensional sparse functions, Proceedings of ICASSP '11

S. Foucart, Sampling schemes and recovery algorithms for functions of few coordinate variables, J. Compl. 2020

Sums of ridge functions

Structural assumptions

• **Sparse additive models:** H. Tyagi and J. Vybiral: Learning non-smooth sparse additive models from point queries in high dimensions, Constr. Appr. 2019:

 $r_0 = 1, \ f: [-1,1]^d \rightarrow \mathbb{R}$

$$f(\mathbf{x}) = \sum_{j \in \mathcal{S}_1} \phi_j(\mathbf{x}_j),$$

where $x = (x_1, \dots, x_d)$ and $\mathcal{S}_1 \subset \{1, \dots, d\}$ with $|\mathcal{S}_1| \ll d$

$$\begin{split} r_{0} &= 2, \ f: [-1,1]^{d} \to \mathbb{R} \\ f(x) &= \sum_{j \in \mathcal{S}_{1}} \phi_{j}(x_{j}) + \sum_{(j_{1},j_{2}) \in \mathcal{S}_{2}} \phi_{(j_{1},j_{2})}(x_{j_{1}},x_{j_{2}}), \\ \text{with } \mathcal{S}_{2} \subset {\binom{\{1,\ldots,d\}}{2}} \text{ and } |\mathcal{S}_{2}| \ll {\binom{d}{2}} \end{split}$$

Ridge functions

Neurons and neural networks

Sums of ridge functions

Ridge functions

Ridge functions

Let $g : \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}^d \setminus \{0\}$. Ridge function with ridge profile g and ridge vector a is the function

 $f(x) := g(\langle a, x \rangle).$

Constant along the hyperplane $a^{\perp} = \{y \in \mathbb{R}^d : \langle y, a \rangle = 0\}$ and its translates.

More general, if $g : \mathbb{R}^k \to \mathbb{R}$ and $A \in \mathbb{R}^{k \times d}$ with $k \ll d$ then

$$f(x) := g(Ax)$$

is a k-ridge function.

Ridge functions in approximation theory

Approximation of a function by functions from the dictionary

$$D_{ ext{ridge}} = \{ arrho(\langle k, x
angle - b) : k \in \mathbb{R}^d, b \in \mathbb{R} \}$$

- Fundamentality
- Greedy algorithms

Lin & Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993), no. 3, 295–311

Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems 2 (1989), 303–314

Leshno, Lin, Pinkus & Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks 6 (1993), 861–867

Ridge functions

Ridge functions: Approximation algorithms

k = 1: $f(x) = g(\langle a, x \rangle)$, $||a||_2 = 1$, g smooth

Approximation has two parts: approximation of g and of a

Recovery of *a* - from $\nabla f(x)$:

$$abla f(x) = g'(\langle a, x \rangle)a,
abla f(0) = g'(0)a.$$

After recovering a, the problem becomes essentially one-dimensional and one can use arbitrary sampling method to approximate g.

 $g'(0) \neq 0 \dots g'(0) = 1$

Ridge functions

Neurons and neural networks

Sums of ridge functions

A.Cohen, I.Daubechies, R.DeVore, G.Kerkyacharian, D.Picard, '12 *Capturing ridge functions in high dimensions from point queries*

- $k = 1 : f(x) = g(\langle a, x \rangle)$
- $f:[0,1]^d \to \mathbb{R}$
- $g \in C^{s}([0,1]), \ 1 < s$
- $\|g\|_{C^s} \leq M_0$
- $\|a\|_{\ell^d_q} \le M_1, 0 < q \le 1$
- *a* ≥ 0

Then

$$\|f - \hat{f}\|_{\infty} \leq CM_0 \left\{ L^{-s} + M_1 \left(\frac{1 + \log(d/L)}{L} \right)^{1/q-1} \right\}$$

using 3L + 2 sampling points

Introduction	
00000	

Ridge functions

Neurons and neural networks 000

Sums of ridge functions

• First sampling along the diagonal

$$\frac{i}{L} \mathbf{1} = \frac{i}{L} (1, \dots, 1), i = 0, \dots, L :$$

$$f\left(\frac{i}{L}\mathbf{1}\right) = g\left(\left\langle\frac{i}{L}\mathbf{1}, a\right\rangle\right) = g(i||a||_1/L)$$

- Recovery of g on a grid of $[0, ||a||_1]$
- Finding i_0 with largest $g((i_0+1)||a||_1/L) g(i_0||a||_1/L)$
- Approximating D_{φj} f(i₀/L · 1) = g'(i₀||a||₁/L)⟨a, φ_j⟩ by first order differences
- Then recovery of a from ⟨a, φ₁⟩,..., ⟨a, φ_m⟩ by methods of compressed sensing (CS)

Ridge functions

Sums of ridge functions

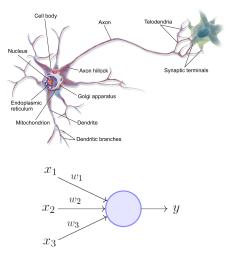
Further results:

 M. Fornasier, K. Schnass, and J.V., Learning functions of few arbitrary linear parameters in high dimensions, Found. Comput. Math. (2012)

 \rightsquigarrow Recovery algorithm for ridge functions on a ball

- A. Kolleck and J.V., On some aspects of approximation of ridge functions, J. Appr. Theory (2015)
 → Ridge functions on cubes and other topics
- S. Mayer, T. Ullrich, and J.V., Entropy and sampling numbers of classes of ridge functions, Constr. Appr. (2015)
 → Lower bounds, entropy numbers
- B.Doerr and S. Mayer, The recovery of ridge functions on the hypercube suffers from the curse of dimensionality, J. Compl. (2021)
 → Ridge functions on cubes, lower bounds

Motivated by biological research on human brain and neurons W. McCulloch, W. Pitts (1943); M. Minsky, S. Papert (1969)



Perceptron Model (Minsky-Papert in 1969)

(日)

Ridge function

Sums of ridge functions

Artificial Neuron

 \ldots gets activated if a linear combination of its inputs grows over a certain threshold \ldots

- Inputs $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$
- Weights $w = (w_1, \dots, w_n) \in \mathbb{R}^n$
- Comparing $\langle w, x
 angle$ with a threshold $b \in \mathbb{R}$
- Plugging the result into the "activation function" jump (or smoothed jump) function σ

Artificial neuron is a function

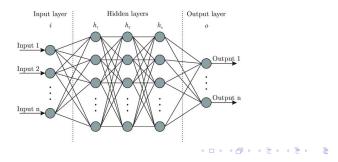
$$\mathbf{x} \to \sigma(\langle \mathbf{x}, \mathbf{w} \rangle - \mathbf{b}),$$

where $\sigma : \mathbb{R} \to \mathbb{R}$ might be $\sigma(x) = \operatorname{sign}(x)$ or $\sigma(x) = e^x/(1 + e^x)$, etc.

Artificial neural networks

Artificial neural network is a directed, acyclic graph of artificial neurons

- Input: $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$
- First layer of neurons: $y_1 = \sigma(\langle x, w_1^1 \rangle - b_1^1), \dots, y_{n_1} = \sigma(\langle x, w_{n_1}^1 \rangle - b_{n_1}^1)$
- The outputs y = (y₁,..., y_{n₁}) become inputs for the next layer ...; last layer outputs y ∈ ℝ



ction Ridge functions Neurons and neural networks	Sums of ridge functions
---	-------------------------

M. Fornasier, J.V., I. Daubechies, Robust and resource efficient identification of shallow neural networks by fewest samples to appear in IMA: Information and Inference

Recovery of

$$f(x) = \sum_{j=1}^{m} g_j(\langle a_j, x \rangle)$$

- one layer of a neural network
 - Special case of f(x) = g(Ax), but we would like to have m onedimensional problems, and not one m-dimensional
 - We would like to identify a_1, \ldots, a_m , then g_1, \ldots, g_m

Ridge function: 000000 Neurons and neural networks $_{\rm OOO}$

Sums of ridge functions

• Step 1.: Sampling of

$$abla f(x) = \sum_{j=1}^m g_j'(\langle a_j, x \rangle) a_j$$

at different points gives elements of

$$A = \operatorname{span}\{a_1, \ldots, a_m\} \subset \mathbb{R}^d$$

- We sample (only) differences and obtain an approximation $\tilde{A} \sim A$, upper bound on $\|P_A P_{\tilde{A}}\|_F$
- \overline{A} matrix, columns are a basis of \widetilde{A}
- We consider

$$\tilde{f}(y) = \sum_{i=1}^{m} g_i(\langle \bar{A}^T a_i, y \rangle) = \sum_{i=1}^{m} g_i(\langle a_i, \bar{A}y \rangle)$$

<ロト<部ト<差ト<差ト 差 のQで 17/23

troduction 2000	Ridge functions 000000	Sums of ridge functions

Recovery of individual
$$a_i$$
's for $d = m$?

• Step 2.: Second order derivatives:

$$abla^2 f(x) = \sum_{j=1}^m g_j''(\langle a_j, x \rangle) a_j \otimes a_j$$

Put

$$\mathcal{A} = \operatorname{span}\{a_i \otimes a_i : i = 1, \dots, m\} \subset \mathbb{R}^{m \times m}$$

- We can recover $\tilde{\mathcal{A}}\sim \mathcal{A}$ - an approximation of \mathcal{A}

ion	Ridge functions	Neurons and neural networks	Sums of ridge functions
-----	-----------------	-----------------------------	-------------------------

- Step 3.: We try to find matrices in *A*, which are close to a_i ⊗ a_i ∈ A
- We look for matrices in $\tilde{\mathcal{A}}$ with the "smallest" rank
- We analyze the non-convex problem

(*) arg max
$$\|M\|$$
, s.t. $M \in \tilde{\mathcal{A}}, \|M\|_F \leq 1$

Every algorithm, which is able to find an approximation of a₁ ⊗ a₁ can also land close to a_j ⊗ a_j, j = 2,..., m, hence it must be non-convex

Analysis of (\star) :

- Let M be a local maximizer of (\star)
- Eigenvalues $\lambda_1, \ldots, \lambda_m$, eigenvectors u_1, \ldots, u_m

- Then

$$u_j^{\mathsf{T}} X u_j = \lambda_j \langle X, M
angle$$
 for every $X \in ilde{\mathcal{A}}$

and every j with $|\lambda_j| = \|M\|$

- If a_1, \ldots, a_m are nearly orthonormal, then $|\lambda_1| = \|M\|$ is unique and

$$2\sum_{k=2}^{m} \frac{(u_1^T X u_k)^2}{|\lambda_1 - \lambda_k|} \le \|M\| \cdot \|X - \langle X, M \rangle_F M\|_F^2 \quad \text{for all } X \in \tilde{\mathcal{A}}$$

second Hadamard variation formula

The Algorithm leads to \hat{a} with $\|\hat{a} - a_{j_0}\|_2$ small.

Ridge function

Neurons and neural networks

Sums of ridge functions

Whitening: If a_i 's are not orthonormal, we consider (any) positive definite

$$G = \sum_{i=1}^m \xi_i a_i \otimes a_i \in \mathcal{A}$$

and its singular value decomposition

$$G = UDU^T$$
,

then $W := D^{-1/2}U^T$ is the so-called *whitening matrix* and $\{\sqrt{\xi_i}Wa_i : i = 1, ..., m\}$ is an orthonormal basis.

Passive sampling: sampling points preselected at random from a distribution with known density

Identification of g_i's:

- $(\hat{a}_j)_{j=1}^m$ an approximation of $(a_j)_{j=1}^m$
- $(\hat{b}_j)_{j=1}^m$ the dual basis to $(\hat{a}_j)_{j=1}^m$
- $\hat{g}_j(t) := f(t\hat{b}_j).$

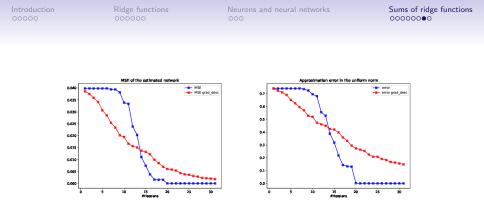


Figure: Average approximation error of 10 random networks with $m = 20, \varepsilon = 1$ in terms of MSE (left), uniform norm (right). The errors were measured over 10^5 datapoints generated uniform at random on the ball B_1^d .

Ridge functions

Neurons and neural networks

Sums of ridge functions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

23/23

Thank you for your attention!