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Outline

• Approximation of multivariate functions

• Structural assumptions: active variables, SPAM’s, . . .

• Ridge functions - single neurons:
• Recovery algorithms
• Lower bounds

• Sums of ridge functions - one layer neural networks:
• Non-linear optimization
• Whitening
• . . .
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Classical task of approximation/sampling:
Given a function f with some properties (i.e. from some set) and
few its function values y1 = f (x1), . . . , yn = f (xn) generate a
function g , which is close to f in some sense.

Typically, the error (i.e. the distance of f and g) decays with n.
Well known for many classical function spaces, like Sobolev spaces,
Besov spaces, Triebel-Lizorkin spaces, etc.

Typical decay: n−s/d

Birman, Solomyak, Temlyakov, Kudryavtsev, Kashin, DeVore,
Maiorov, Cohen, Kruglyak, Heinrich, Novak, Triebel, Sickel, Ullrich
and many many others . . .
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Curse of dimension

Many classical problems suffer from exponential dependence of the
results on d!

Example: Approximation of smooth functions
Let Fd := {f : [0, 1]d → R, ‖Dαf ‖∞ ≤ 1, α ∈ Nd

0}
Smoothness does not help!. . . ?!
Infinitely differentiable functions on Ω = [0, 1]d :

Novak, Woźniakowski (2009): Initial error is the same as error of
uniform approximation for n ≤ 2bd/2c − 1
. . . curse of dimension!
. . . the number of sampling points must grow exponentially in d
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Structural assumptions
• Active variables:
R. DeVore, G. Petrova, and P. Wojtaszczyk: Approximation of functions

of few variables in high dimensions, Constr. Appr. 2011:

f (x1, . . . , xd) := g(xi1 , . . . , xi`), `� N.

1-Lipschitz function f can be recovered uniformly with accuracy ε
from C (`)ε−` log2 d sampling points.

Use of low-rank matrix recovery:
H. Tyagi, V. Cevher, Learning non-parametric basis independent models

from point queries via low-rank methods, ACHA 2014

Revisited also in
K. Schnass, J.V., Compressed learning of high-dimensional sparse

functions, Proceedings of ICASSP ’11

S. Foucart, Sampling schemes and recovery algorithms for functions of

few coordinate variables, J. Compl. 2020
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Structural assumptions
• Sparse additive models: H. Tyagi and J. Vybiral: Learning

non-smooth sparse additive models from point queries in high

dimensions, Constr. Appr. 2019:

r0 = 1, f : [−1, 1]d → R

f (x) =
∑
j∈S1

φj(xj),

where x = (x1, . . . , xd) and S1 ⊂ {1, . . . , d} with |S1| � d

r0 = 2, f : [−1, 1]d → R

f (x) =
∑
j∈S1

φj(xj) +
∑

(j1,j2)∈S2

φ(j1,j2)(xj1 , xj2),

with S2 ⊂
({1,...,d}

2

)
and |S2| �

(d
2

)
6/23



Introduction Ridge functions Neurons and neural networks Sums of ridge functions

Ridge functions

Ridge functions
Let g : R→ R and a ∈ Rd \ {0}.
Ridge function with ridge profile g and ridge vector a is the
function

f (x) := g(〈a, x〉).

Constant along the hyperplane a⊥ = {y ∈ Rd : 〈y , a〉 = 0} and its
translates.

More general, if g : Rk → R and A ∈ Rk×d with k � d then

f (x) := g(Ax)

is a k−ridge function.
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Ridge functions in approximation theory

Approximation of a function by functions from the dictionary

Dridge = {%(〈k, x〉 − b) : k ∈ Rd , b ∈ R}
• Fundamentality

• Greedy algorithms

Lin & Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993),
no. 3, 295–311

Cybenko, Approximation by superpositions of a sigmoidal function, Math.
Control Signals Systems 2 (1989), 303–314

Leshno, Lin, Pinkus & Schocken, Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function, Neural
Networks 6 (1993), 861–867
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Ridge functions: Approximation algorithms

k = 1: f (x) = g(〈a, x〉), ‖a‖2 = 1, g smooth

Approximation has two parts: approximation of g and of a

Recovery of a - from ∇f (x):

∇f (x) = g ′(〈a, x〉)a,∇f (0) = g ′(0)a.

After recovering a, the problem becomes essentially
one-dimensional and one can use arbitrary sampling method to
approximate g .

g ′(0) 6= 0. . . g ′(0) = 1
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A.Cohen, I.Daubechies, R.DeVore, G.Kerkyacharian, D.Picard, ’12
Capturing ridge functions in high dimensions from point queries

• k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)k = 1 : f (x) = g(〈a, x〉)
• f : [0, 1]d → R
• g ∈ C s([0, 1]), 1 < s

• ‖g‖C s ≤ M0

• ‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1‖a‖`dq ≤ M1, 0 < q ≤ 1

• a ≥ 0a ≥ 0a ≥ 0

Then

‖f − f̂ ‖∞ ≤ CM0

{
L−s + M1

(
1 + log(d/L)

L

)1/q−1
}

using 3L + 2 sampling points
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• First sampling along the diagonal
i
L1 = i

L(1, . . . , 1), i = 0, . . . , L :

f
( i
L

1
)

= g
(〈 i

L
1, a
〉)

= g(i‖a‖1/L)

• Recovery of g on a grid of [0, ‖a‖1]

• Finding i0 with largest g((i0 + 1)‖a‖1/L)− g(i0‖a‖1/L)

• Approximating Dϕj f (i0/L · 1) = g ′(i0‖a‖1/L)〈a, ϕj〉 by first
order differences

• Then recovery of a from 〈a, ϕ1〉, . . . , 〈a, ϕm〉 by methods of
compressed sensing (CS)
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Further results:

• M. Fornasier, K. Schnass, and J.V., Learning functions of few

arbitrary linear parameters in high dimensions, Found. Comput.

Math. (2012)

 Recovery algorithm for ridge functions on a ball

• A. Kolleck and J.V., On some aspects of approximation of ridge

functions, J. Appr. Theory (2015)

 Ridge functions on cubes and other topics

• S. Mayer, T. Ullrich, and J.V., Entropy and sampling numbers of

classes of ridge functions, Constr. Appr. (2015)

 Lower bounds, entropy numbers

• B.Doerr and S. Mayer, The recovery of ridge functions on the

hypercube suffers from the curse of dimensionality, J. Compl. (2021)

 Ridge functions on cubes, lower bounds
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Motivated by biological research on human brain and neurons
W. McCulloch, W. Pitts (1943); M. Minsky, S. Papert (1969)
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Artificial Neuron

. . . gets activated if a linear combination of its inputs grows over a
certain threshold. . .

• Inputs x = (x1, . . . , xn) ∈ Rn

• Weights w = (w1, . . . ,wn) ∈ Rn

• Comparing 〈w , x〉 with a threshold b ∈ R
• Plugging the result into the “activation function” - jump (or

smoothed jump) function σ

Artificial neuron is a function
x → σ(〈x ,w〉 − b),

where σ : R→ R might be σ(x) = sign(x) or σ(x) = ex/(1 + ex),
etc.
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Artificial neural networks
Artificial neural network is a directed, acyclic graph of artificial
neurons

• Input: x = (x1, . . . , xn) ∈ Rn

• First layer of neurons:
y1 = σ(〈x ,w1

1 〉 − b11), . . . , yn1 = σ(〈x ,w1
n1〉 − b1n1)

• The outputs y = (y1, . . . , yn1) become inputs for the next
layer . . . ; last layer outputs y ∈ R
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M. Fornasier, J.V., I. Daubechies,
Robust and resource efficient identification of shallow neural networks
by fewest samples
to appear in IMA: Information and Inference

Recovery of

f (x) =
m∑
j=1

gj(〈aj , x〉)

- one layer of a neural network

• Special case of f (x) = g(Ax), but we would like to have m
onedimensional problems, and not one m-dimensional

• We would like to identify a1, . . . , am, then g1, . . . , gm
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• Step 1.: Sampling of

∇f (x) =
m∑
j=1

g ′j (〈aj , x〉)aj

at different points gives elements of

A = span{a1, . . . , am} ⊂ Rd

• We sample (only) differences and obtain an approximation
Ã ∼ A, upper bound on ‖PA − PÃ‖F
• Ā - matrix, columns are a basis of Ã

• We consider

f̃ (y) =
m∑
i=1

gi (〈ĀTai , y〉) =
m∑
i=1

gi (〈ai , Āy〉)
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Recovery of individual ai ’s for d = m?

• Step 2.: Second order derivatives:

∇2f (x) =
m∑
j=1

g ′′j (〈aj , x〉)aj ⊗ aj

• Put
A = span{ai ⊗ ai : i = 1, . . . ,m} ⊂ Rm×m

• We can recover Ã ∼ A - an approximation of A
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• Step 3.: We try to find matrices in Ã, which are close to
ai ⊗ ai ∈ A

• We look for matrices in Ã with the “smallest” rank

• We analyze the non-convex problem

(?) arg max ‖M‖, s.t. M ∈ Ã, ‖M‖F ≤ 1

• Every algorithm, which is able to find an approximation of
a1 ⊗ a1 can also land close to aj ⊗ aj , j = 2, . . . ,m, hence it
must be non-convex
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Analysis of (?):
- Let M be a local maximizer of (?)
- Eigenvalues λ1, . . . , λm, eigenvectors u1, . . . , um
- Then

uTj Xuj = λj〈X ,M〉 for every X ∈ Ã

and every j with |λj | = ‖M‖
- If a1, . . . , am are nearly orthonormal, then |λ1| = ‖M‖ is unique
and

2
m∑

k=2

(uT1 Xuk)2

|λ1 − λk |
≤ ‖M‖ · ‖X − 〈X ,M〉FM‖2F for all X ∈ Ã

second Hadamard variation formula

The Algorithm leads to â with ‖â− aj0‖2 small.
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Whitening: If ai ’s are not orthonormal, we consider (any) positive
definite

G =
m∑
i=1

ξiai ⊗ ai ∈ A

and its singular value decomposition

G = UDUT ,

then W := D−1/2UT is the so-called whitening matrix and
{
√
ξiWai : i = 1, . . . ,m} is an orthonormal basis.

Passive sampling: sampling points preselected at random from a
distribution with known density

Identification of gi ’s:
- (âj)

m
j=1 an approximation of (aj)

m
j=1

- (b̂j)
m
j=1 the dual basis to (âj)

m
j=1

- ĝj(t) := f (tb̂j).
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Figure: Average approximation error of 10 random networks with
m = 20, ε = 1 in terms of MSE (left), uniform norm (right). The errors
were measured over 105 datapoints generated uniform at random on the
ball Bd

1 .
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Thank you for your attention!

23/23


	Introduction
	Ridge functions
	Neurons and neural networks
	Sums of ridge functions

