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Motivation

Modern approximation techniques are

widely used for
I audio/video data
I simulation on elementary geometry (or images thereof)

rarely used for
I geometric modeling
I simulation on general geometry

Reason (amongst others): approximation is

well understood on boxes

partially understood on triangulations

not well understood on arbitrary domains
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Motivation

Problems with TP-splines:

boundary data
I weight function

stable bases
I extension
I normalization

theoretical results
I Dahmen, DeVore, Scherer 1980:

min
s
‖f − s‖Ω,p ≤ C

d∑
i=1

hnii ‖∂
ni
i f ‖Ω,p

I Ω coordinate-wise convex and . . .
I C depends on aspect ratio of grid cells.
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Outline

Interpolation with polynomials on TP grids

Approximation with polynomials on domains

Approximation with TP splines on donains
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Polynomial interpolation

Theorem

Let Γ = [γ1, . . . , γn] be a sequence of interpolation nodes in Ω := [0, 1].
For f ∈ Cn(Ω), the interpolation problem

p ∈ Pn(R) : p(Γ) = f (Γ)

is uniquely solvable, and the error satisfies

f (x)− p(x) =
(x − γ1) · · · (x − γn)

n!
Dnf (ξ), x , ξ ∈ [0, 1].

universal result, covering also Hermite and Taylor case

elementary proof
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Let Γ = [γ1, . . . , γn] be a sequence of interpolation nodes in Ω := [0, 1].
For f ∈ Cn(Ω), the interpolation problem

p ∈ Pn(R) : p(Γ) = f (Γ)

is uniquely solvable, and the error satisfies

‖f −p‖Ω,∞ ≤ C (Γ)
∥∥Dnf

∥∥
Ω,∞, C (Γ) :=

‖(·−γ1) · · · (·−γn)‖Ω,∞
n!

≤ 1

n!
.

universal result, covering also Hermite and Taylor case

elementary proof
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Polynomial interpolation

Observation

Let Γ = [γ1, . . . , γN ] be a sequence of interpolation nodes in Ω := [0, 1]d .
For f ∈ Cn(Ω), the interpolation problem

p ∈ Pn(Rd) : p(Γ) = f (Γ)

is not always uniquely solvable, and error representations are complicated.

For polynomials of total order n ∈ N: Sauer-Xu formula (1995)
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Polynomial interpolation

Observation

Let Γ = [γ1, . . . , γN ] be a sequence of interpolation nodes in Ω := [0, 1]d .
For f ∈ Cn(Ω), the interpolation problem

p ∈ Pn(Rd) : p(Γ) = f (Γ)

is not always uniquely solvable, and error representations are complicated.

For polynomials of coordinate order n ∈ Nd and tensor product grid:
de Boor formula (1997)

f (x)− p(x) =
d∑

s=1

ψs,Γ(x)
(
IΓ,\s [((ti ,s |s ·) : i = 0, . . . , ks), x|is , . . . , is ]f

)
(x\s)

”. . . which is an attempt to avoid more cumbersome notation.”
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Polynomial interpolation on TP grid

Theorem

Let Γ := Γ1 × · · · × Γd ⊂ Ω := [0, 1]d be a tensor product grid of
dimension n = [n1, . . . , nd ]

The interpolation problem

p ∈ Pn : p(Γ) = f (Γ)

is uniquely solvable via factorization.

If ∂αf is bounded for all α ≤ n, then the error satisfies

‖f − p‖∞,Ω ≤
∑

αi∈{0,ni}

C
α1
n1 (Γ1) · · ·C

αd
nd (Γd) ‖∂αf ‖∞,Ω.
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Polynomial interpolation on TP grid

Theorem

Let Γ := Γ1 × · · · × Γd ⊂ Ω := [0, 1]d be a tensor product grid of
dimension n = [n1, . . . , nd ]

The interpolation problem

p ∈ Pn : p(Γ) = f (Γ)

is uniquely solvable via factorization.

If ∂αf is bounded for all α ≤ n, then the error satisfies

‖f − p‖∞,Ω ≤
∑

αi∈{0,ni}

1

α!
‖∂αf ‖∞,Ω.
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Polynomial interpolation on TP grid

Example

For d = 2 and n = (4, 3), we obtain the estimate

‖f − p‖ ≤ ‖∂
4
1 f ‖
4!

+
‖∂3

2 f ‖
3!

+
‖∂4

1∂
3
2 f ‖

4! 3!
.

Proof

With E : f 7→ f − p the error operator, write

E = −
∑

αi∈{0,1}

(−Ed)αd · · · (−E1)α1

and use commutation property

∂iEj = Ej∂i , i 6= j .
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Polynomial interpolation on TP grid

Definition

The least distance δ of a sorted sequence γ1 ≤ · · · ≤ γn is defined by

δ := min
i
γi+1 − γi .

Theorem (Atkinson 1994, Mößner & R. 2009)

For a TP grid with least distances δ1, . . . , δd , the interpolation error is

‖f − p‖∞,Ω ≤
d∑

j=1

Lj ‖∂
nj
j f ‖∞,Ω, Lj := C (Γj) ‖Ij+1‖ · · · ‖Id‖,

where ‖Ij‖ is the Lebesgue constant of the univariate interpolation
operator Ij on Γj . Note that

C (Γj) ≤ 1/nj ! and ‖Ij‖ ≤ nj δ
1−nj
j .
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Polynomial interpolation on TP grid

Example

For d = 2, n = (4, 3), and least distances δ1, δ2, we obtain the estimate

‖f − p‖ ≤ 3

4!δ2
2

‖∂4
1 f ‖+

1

3!
‖∂3

2 f ‖,

and equally

‖f − p‖ ≤ 4

3!δ3
1

‖∂3
2 f ‖+

1

4!
‖∂4

1 f ‖.

Proof

Let I∗ := Id−1 · · · I1 and E∗ := Id− I∗. Write

E = Ed + IdE∗,

and proceed by induction on d .
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Polynomial interpolation on TP grid

Chebyshev nodes

For a TP grid with least distances δ1, . . . , δd , the interpolation error is

‖f − p‖∞,Ω ≤
d∑

j=1

Lj ‖∂
nj
j f ‖∞,Ω, Lj := C (Γj) ‖Ij+1‖ · · · ‖Id‖,

Chebyshev nodes γr ,j := cos2
(

(2j−1)π
4nj

)
provide close-to-optimal error

bounds,

‖f − p‖ ≤
d∑

j=1

22d+1

(nj − 1)!4nj+j
‖∂njj f ‖.

Ulrich Reif
[-5mm] Workshop on Multivariate Approximation and Geometric Modeling[2mm] Moscow, December 01, 2021 12

/ 37



Polynomial interpolation on TP grid

Definition

The least distance δ[m] skipping m nodes is defined by

δ[m] := min
i
γi+1+m − γi .
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Polynomial interpolation on TP grid

Definition

The least distance δ[m] skipping m nodes is defined by

δ[m] := min
i
γi+1+m − γi .

Theorem (Mößner & R. 2009)

Let m ∈ Nd
0 be chosen such that

〈m,n−1〉 :=
m1

n1
+ · · ·+ md

nd
< 1.

For a TP grid with least distances δ1[m1], . . . , δd [md ] bounded by
δr [mr ] ≥ δ̄ > 0, the interpolation error is bounded by

‖f − p‖∞,Ω ≤ c(δ̄)
d∑

j=1

‖∂njj f ‖∞,Ω.
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Polynomial interpolation on TP grid

Definition

The least distance δ[m] skipping m nodes is defined by

δ[m] := min
i
γi+1+m − γi .

Theorem (Mößner & R. 2009)

Let m ∈ Nd
0 be chosen such that

〈m,n−1〉 :=
m1

n1
+ · · ·+ md

nd
< 1.

For a TP grid with least distances δ1[m1], . . . , δd [md ] bounded by
δr [mr ] ≥ δ̄ > 0, the interpolation error is bounded by

‖∂α(f − p)‖∞,Ω ≤ c(δ̄)
d∑

j=1

‖∂njj f ‖∞,Ω, 〈α,n−1〉 < 1.
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Polynomial interpolation on TP grid

Proof

Use embedding theorem in anisotropic Sobolev spaces,

‖∂αf ‖∞ ≤ c1

(
‖f ‖∞ +

d∑
j=1

‖∂njj f ‖∞
)
,

α1

n1
+ · · ·+ αd

nd
< 1,

and the mean value theorem for divided differences to show that

‖Ir f ‖∞ ≤ c2(δr )
(
‖f ‖∞ + ‖∂nrr f ‖∞

)
.
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Example

Consider f (x , y) := (x + y)11/2, (x , y) ∈ [0, 1]2 and order n = (5, 5):

The estimate

‖f − p‖ ≤ ‖∂
5
1 f ‖
5!

+
‖∂5

2 f ‖
5!

+
‖∂5

1∂
5
2 f ‖

5! · 5!

does not apply since ∂5
1∂

5
2 f is unbounded.
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Example

Consider f (x , y) := (x + y)11/2, (x , y) ∈ [0, 1]2 and order n = (5, 5):

For Γ1 = Γ2 = [0, ε, 2ε, 3ε, 1], the interpolation error is unbounded,

‖f − p‖ ≥ 1

50
√
ε
.

For m = (2, 2), we have

〈m,n−1〉 = 4/5 < 1 but δ1[2] = δ2[2] = 1/(3ε).

For m = (3, 3), we have

δ1[3] = δ2[3] = 1 but 〈m,n−1〉 = 6/5 > 1.
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Example

Consider f (x , y) := (x + y)11/2, (x , y) ∈ [0, 1]2 and order n = (5, 5):

For Γ1 = [0, 0, 0, 0, 1] and Γ2 = [0, 0, 1/2, 1/2, 1], the interpolation error is
bounded,

‖f − p‖ ≈ 0.32.

Indeed, for m = (3, 1), we have

〈m,n−1〉 = 4/5 < 1 and δ1[3] = 1, δ2[1] = 1/2.

Ulrich Reif
[-5mm] Workshop on Multivariate Approximation and Geometric Modeling[2mm] Moscow, December 01, 2021 15

/ 37



Approximation power of polynomials

Fundamental question

Given a function f defined on some domain Ω ⊂ Rd , and a subspace P∗ of
polynomials, how well can f be approximated by a polynomial p ∈ P∗?

The answer will depend on

the subspace of polynomials

the regularity of f

the geometry of Ω
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Bramble-Hilbert Lemma

Theorem (Bramble and Hilbert 1971)

Let Ω ⊂ [0, 1]d be a connected domain with Lipschitz boundary.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω).

Main work done by Morrey (1966).

Proof non-constructive.

Dependence of constant on the shape of Ω not specified .
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Bramble-Hilbert Lemma

Theorem (Dupont and Scott 1980)

Let Ω ⊂ [0, 1]d be star-shaped wrt. some ball.
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Theorem (Dupont and Scott 1980)

Let Ω ⊂ [0, 1]d be star-shaped wrt. some ball.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω).

π defined as averaged Taylor polynomial.

Similar proof technique used for Sobolev embedding theorems.

Dependence of constant on the shape of Ω not specified explicitly.
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Bramble-Hilbert Lemma

Theorem (Durán 1983, Dechevski and Wendland 2006)

Let Ω ⊂ [0, 1]d be star-shaped wrt. some ball.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω).

π defined as averaged Taylor polynomial.

Dependence of constant on the shape of Ω specified explicitly.
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Bramble-Hilbert Lemma

Theorem (Dechevski and Quak 1990)

Let Ω ⊂ [0, 1]d be star-shaped wrt. a single point.
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Bramble-Hilbert Lemma

Theorem (Dechevski and Quak 1990)

Let Ω ⊂ [0, 1]d be star-shaped wrt. a single point.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω), p > d .

π defined as averaged Taylor polynomial.

Dependence of constant on the shape of Ω specified explicitly.
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Bramble-Hilbert Lemma

Theorem (Verfürth 1999)

Let Ω ⊂ [0, 1]d be star-shaped wrt. a single point.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω), p ≥ 2.

Based on Poincaré inequality.

π defined by mean value interpolation.

Dependence of constant on the shape of Ω specified explicitly.
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Bramble-Hilbert Lemma

Theorem (Thrun 2003)

Let Ω ⊂ [0, 1]d be star-shaped wrt. a single point.

For any function f ∈W n
p (Ω) there exists a polynomial π ∈ Pn of total

order n such that

‖f − π‖ ≤ c(Ω)
∑
|α|=n

‖∂αf ‖Lp(Ω), p ≥ 1.

Based on Poincaré inequality.

π defined by mean value interpolation.

Dependence of constant on the shape of Ω specified explicitly.
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Bramble-Hilbert Lemma

not covered diverging constant
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Bramble-Hilbert Lemma

Theorem (R. 2009)

Let Ω ⊂ [0, 1]d

be bounded by a finite number of axis-aligned graphs,

contain some box B.

Given f ∈W n
p (Ω), define the polynomial π ∈ Pn of coordinate order

n ∈ Nd by

π :=
∑
α<n

〈f , qα〉Bqα,

where the qα are tensor product Legendre polynomials on B. Then

‖f − π‖Lp(Ω) ≤
d∑

j=1

cj(Ω,n)
∥∥∂njj f

∥∥
Lp(Ω)

, p ≥ 1.
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Bramble-Hilbert Lemma

Lemma

Let Y ⊂ [0, 1]d−1 be measurable, and ϕ : Y → [r ,R] be continuous.
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Bramble-Hilbert Lemma

Lemma

Let Y ⊂ [0, 1]d−1 be measurable, and ϕ : Y → [r ,R] be continuous.
Then

‖∆‖Lp(Φ+) ≤ γ1 ‖∆‖Lp(Φ−) + γ2 ‖∂ndd ∆‖Lp(Φ),

where the constants γ1, γ2 depend only on R/r , and n, p.
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Bramble-Hilbert Lemma

Recursive construction of domain Ω:

Start with some box Ω0 := B ⊂ Rd ,

Ulrich Reif
[-5mm] Workshop on Multivariate Approximation and Geometric Modeling[2mm] Moscow, December 01, 2021 26

/ 37



Bramble-Hilbert Lemma

Recursive construction of domain Ω:

Start with some box Ω0 := B ⊂ Rd ,

For j = 1, . . . , J do: Choose some graph domain Φj and an
axis-aligned isometry Ij such that

Ij(Φ−j ) ⊂ Ωj−1 and set Ωj := Ωj−1 ∪ Ij(Φj).
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Recursive construction of domain Ω:

Start with some box Ω0 := B ⊂ Rd ,
For j = 1, . . . , J do: Choose some graph domain Φj and an
axis-aligned isometry Ij such that

Ij(Φ−j ) ⊂ Ωj−1 and set Ωj := Ωj−1 ∪ Ij(Φj).

Set Ω := ΩJ
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Bramble-Hilbert Lemma

Recursive construction of domain Ω:

Start with some box Ω0 := B ⊂ Rd ,

For j = 1, . . . , J do: Choose some graph domain Φj and an
axis-aligned isometry Ij such that

Ij(Φ−j ) ⊂ Ωj−1 and set Ωj := Ωj−1 ∪ Ij(Φj).

Set Ω := ΩJ

Proof of Theorem:

Error ∆ := f − π is small on box Ω0 by construction.

Control error propagation ‖∆‖Lp(Ωj−1) → ‖∆‖Lp(Ωj ) by means of the
lemma.
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Poincaré inequality

Theorem (R. 2009)

Let Ω ⊂ [0, 1]d

be bounded by a finite number of axis-aligned graphs,

contain some box B.

Given f ∈W 1
p (Ω), define the constant π ∈ P1 by

π :=
1

volB

∫
B
f ,

Then

‖f − π‖Lp(Ω) ≤ c(Ω) ‖∇f ‖Lp(Ω), p ≥ 1.
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Poincaré inequality

Theorem (R. 2009)

Let Ω ⊂ [0, 1]d

be bounded by a finite number of diffeomorphic images of graphs,

contain some box B.

Given f ∈W 1
p (Ω), define the constant π ∈ P1 by

π :=
1

volB

∫
B
f ,

Then

‖f − π‖Lp(Ω) ≤ c(Ω) ‖∇f ‖Lp(Ω), p ≥ 1.
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T−→
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Lemma

Let

Φ,Φ−,Φ+ be defined as before,

T : Φ→ Rd be a diffeomorphism.

Then

‖∆‖Lp(T (Φ+)) ≤ γ1 ‖∆‖(Lp(T (Φ−)) + γ2 ‖∇∆‖Lp(T (Φ)),

where the constants γ1, γ2

depend only on r ,R and cond(T ) := ‖DT‖∞ · ‖DT−1‖∞,

can be computed explicitly.
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Poincaré inequality

Recursive construction of Ω:

Start with some box Ω0 := B ⊂ Rd ,

For j = 1, . . . , J do: Choose some ϕj -domain Φj and a
diffeomorphism Tj such that

Tj(Φ−j ) ⊂ Ωj−1 and set Ωj := Ωj−1 ∪ Ij(Φj).

Set Ω := ΩJ

Proof of Theorem:

Error ∆ := f − π is small on box Ω0 by construction.

Control error propagation ‖∆‖Lp(Ωj−1) → ‖∆‖Lp(Ωj ) by means of the
lemma.
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Bramble-Hilbert Lemma

Theorem (R. 2009)

Let Ω ⊂ [0, 1]d

be bounded by a finite number of diffeomorphic images of graphs,

contain some box B.

Given f ∈W n
p (Ω), define the polynomial π ∈ Pn of total order n by∫

B
∂αf =

∫
B
∂απ, |α| < n.

Then

‖f − π‖Lp(Ω) ≤ c(Ω, n) |f |W n
p (Ω), p ≥ 1, |α| ≤ n.
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Bramble-Hilbert Lemma

Theorem (R. 2009)

Let Ω ⊂ [0, 1]d

be bounded by a finite number of diffeomorphic images of graphs,

contain some box B.

Given f ∈W n
p (Ω), define the polynomial π ∈ Pn of total order n by∫

B
∂αf =

∫
B
∂απ, |α| < n.

Then

‖∂α(f − π)‖Lp(Ω) ≤ c(Ω, n) |f |W n
p (Ω), p ≥ 1, |α| ≤ n.
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Bramble-Hilbert Lemma

Generalizations:

Let P : W n
p (Ω)→ Pn be a Hölder-continuous projector,

‖P(f )− P(g)‖Lp(Ω) ≤ L ‖f − g‖sLp(Ω), 0 < s ≤ 1.

Then

‖∂α(f − P(f ))‖Lp(Ω) ≤ c(Ω, n) |f |sW n
p (Ω), p ≥ 1, |α| ≤ n.

Replace the total order spaces Pn by any D-invariant subspace P∗ of
polynomials.
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p (Ω)→ Pn be a Hölder-continuous projector,

‖P(f )− P(g)‖Lp(Ω) ≤ L ‖f − g‖sLp(Ω), 0 < s ≤ 1.

Then

‖∂α(f − P(f ))‖Lp(Ω) ≤ c(Ω, n) |f |sW n
p (Ω), p ≥ 1, |α| ≤ n.

Replace the total order spaces Pn by any D-invariant subspace P∗ of
polynomials.

Ulrich Reif
[-5mm] Workshop on Multivariate Approximation and Geometric Modeling[2mm] Moscow, December 01, 2021 32

/ 37



Spline approximation

The Dahmen-DeVore-Scherer error estimate

min
s
‖f − s‖Ω,p ≤ C

d∑
i=1

hnii ‖∂
ni
i f ‖Ω,p

leaves many questions open.
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2d example

Ω

Observation: constant C in error estimate depends on h1/h2.

Reason: B-splines with disconnected support.

Idea: The space of diversified B-splines contains a seperate copy of Bi

for each connected component of suppBi ∩ Ω.

Ulrich Reif
[-5mm] Workshop on Multivariate Approximation and Geometric Modeling[2mm] Moscow, December 01, 2021 34

/ 37



Diversified B-Splines

Theorem (R., Sissouno ’14, ’15)

Let Ω ⊂ R2 be a domain bounded by a finite number of axis-aligned
Lipschitz graphs. There exists a constant C depending only on the order n
and Ω with

inf
s∈S∗
‖f − s‖p ≤ C

2∑
i=1

hnii ‖∂
ni
i f ‖p

for any f ∈W n
p (Ω), where S∗ is a space of diversifed B-splines of order n

and knots with maximal spacing h1, h2.
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A counterexample in 3d

Domain Ω :=
{
x : (x1 − x2)2 + (x1 + x2)4 + (1− x3)2 < 1

}
.

Order n = (n, n, n), where n ≥ 2. .

Knots T1 := T2 := hZ,T3 := h5Z.

Function fh(x1, x2, x3) := x2n−2
2 ((2n − 1)x1 − (n − 1)x2) exp(−x3/h

4).

Error ‖fh − s‖∞ ≥ C
h+h4

∑3
i=1 h

ni
i ‖∂

ni
i fh‖∞.
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Conclusion

A better understanding of approximation on domains

will narrow the gap between multivariate approximation and
applications,

requires more basic research.
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