Interpolation and Approximation with Multivariate Polynomials and Splines

Ulrich Reif Technische Universität Darmstadt

Workshop on Multivariate Approximation and Geometric Modeling

Moscow, December 01, 2021

< □ > < @ > < 注 > < 注 > ... 注

Modern approximation techniques are

- widely used for
 - audio/video data
 - simulation on elementary geometry (or images thereof)
- rarely used for
 - geometric modeling
 - simulation on general geometry

Reason (amongst others): approximation is

- well understood on boxes
- partially understood on triangulations
- not well understood on arbitrary domains

- boundary data
 - weight function

- boundary data
 - weight function
- stable bases
 - extension
 - normalization

- boundary data
 - weight function
- stable bases
 - extension
 - normalization
- theoretical results
 - Dahmen, DeVore, Scherer 1980:

$$\min_{s} \|f-s\|_{\Omega,p} \leq C \sum_{i=1}^{d} h_i^{n_i} \|\partial_i^{n_i}f\|_{\Omega,p}$$

- boundary data
 - weight function
- stable bases
 - extension
 - normalization
- theoretical results
 - Dahmen, DeVore, Scherer 1980:

$$\min_{s} \|f-s\|_{\Omega,p} \leq C \sum_{i=1}^{d} h_i^{n_i} \|\partial_i^{n_i}f\|_{\Omega,p}$$

- Ω coordinate-wise convex and ...
- C depends on aspect ratio of grid cells.

- Interpolation with polynomials on TP grids
- Approximation with polynomials on domains
- Approximation with TP splines on donains

Polynomial interpolation

Theorem

Let $\Gamma = [\gamma_1, \dots, \gamma_n]$ be a sequence of interpolation nodes in $\Omega := [0, 1]$. For $f \in C^n(\Omega)$, the interpolation problem

 $p \in \mathbb{P}_n(\mathbb{R}) : p(\Gamma) = f(\Gamma)$

is uniquely solvable, and the error satisfies

$$f(x) - p(x) = \frac{(x - \gamma_1) \cdots (x - \gamma_n)}{n!} D^n f(\xi), \quad x, \xi \in [0, 1].$$

- universal result, covering also Hermite and Taylor case
- elementary proof

Polynomial interpolation

Theorem

Let $\Gamma = [\gamma_1, \dots, \gamma_n]$ be a sequence of interpolation nodes in $\Omega := [0, 1]$. For $f \in C^n(\Omega)$, the interpolation problem

 $p \in \mathbb{P}_n(\mathbb{R}) : p(\Gamma) = f(\Gamma)$

is uniquely solvable, and the error satisfies

$$\|f-p\|_{\Omega,\infty} \leq C(\Gamma) \|D^n f\|_{\Omega,\infty}, \ C(\Gamma) := \frac{\|(\cdot-\gamma_1)\cdots(\cdot-\gamma_n)\|_{\Omega,\infty}}{n!} \leq \frac{1}{n!}.$$

universal result, covering also Hermite and Taylor case

elementary proof

Observation

Let $\Gamma = [\gamma_1, \dots, \gamma_N]$ be a sequence of interpolation nodes in $\Omega := [0, 1]^d$. For $f \in C^n(\Omega)$, the interpolation problem

$$p \in \mathbb{P}_n(\mathbb{R}^d) : p(\Gamma) = f(\Gamma)$$

is not always uniquely solvable, and error representations are complicated.

For polynomials of total order $n \in \mathbb{N}$: Sauer-Xu formula (1995)

Polynomial interpolation

Observation

Let $\Gamma = [\gamma_1, \ldots, \gamma_N]$ be a sequence of interpolation nodes in $\Omega := [0, 1]^d$. For $f \in C^n(\Omega)$, the interpolation problem

$$p \in \mathbb{P}_n(\mathbb{R}^d)$$
 : $p(\Gamma) = f(\Gamma)$

is not always uniquely solvable, and error representations are complicated.

For polynomials of coordinate order $n \in \mathbb{N}^d$ and tensor product grid: de Boor formula (1997)

$$f(\mathbf{x}) - p(\mathbf{x}) = \sum_{s=1}^{d} \psi_{s,\Gamma}(\mathbf{x}) \big(I_{\Gamma,\backslash s}[((t_{i,s}|_{s} \cdot) : i = 0, \dots, k_{s}), \mathbf{x} | \mathbf{i}_{s}, \dots, \mathbf{i}_{s}] f \big) (\mathbf{x}_{\backslash s})$$

"... which is an attempt to avoid more cumbersome notation."

Theorem

Let $\Gamma := \Gamma_1 \times \cdots \times \Gamma_d \subset \Omega := [0,1]^d$ be a tensor product grid of dimension $\mathbf{n} = [n_1, \dots, n_d]$

• The interpolation problem

$$p \in \mathbb{P}_{\mathbf{n}} : p(\Gamma) = f(\Gamma)$$

is uniquely solvable via factorization.

• If $\partial^{\alpha} f$ is bounded for all $\alpha \leq \mathbf{n}$, then the error satisfies

$$\|f-p\|_{\infty,\Omega} \leq \sum_{\alpha_i \in \{0,n_i\}} C^{\frac{\alpha_1}{n_1}}(\Gamma_1) \cdots C^{\frac{\alpha_d}{n_d}}(\Gamma_d) \|\partial^{\alpha} f\|_{\infty,\Omega}.$$

Theorem

Let $\Gamma := \Gamma_1 \times \cdots \times \Gamma_d \subset \Omega := [0,1]^d$ be a tensor product grid of dimension $\mathbf{n} = [n_1, \dots, n_d]$

• The interpolation problem

$$p \in \mathbb{P}_{n} : p(\Gamma) = f(\Gamma)$$

is uniquely solvable via factorization.

• If $\partial^{\alpha} f$ is bounded for all $\alpha \leq \mathbf{n}$, then the error satisfies

$$\|f-p\|_{\infty,\Omega} \leq \sum_{lpha_i \in \{0,n_i\}} \frac{1}{lpha!} \|\partial^{lpha} f\|_{\infty,\Omega}.$$

Example

For d = 2 and $\mathbf{n} = (4, 3)$, we obtain the estimate

$$\|f - p\| \le \frac{\|\partial_1^4 f\|}{4!} + \frac{\|\partial_2^3 f\|}{3!} + \frac{\|\partial_1^4 \partial_2^3 f\|}{4! 3!}.$$

Example

For d = 2 and $\mathbf{n} = (4, 3)$, we obtain the estimate

$$\|f - p\| \le \frac{\|\partial_1^4 f\|}{4!} + \frac{\|\partial_2^3 f\|}{3!} + \frac{\|\partial_1^4 \partial_2^3 f\|}{4! \, 3!}.$$

Proof

With $E: f \mapsto f - p$ the error operator, write

$${old E}=-\sum_{lpha_i\in\{0,1\}}(-E_d)^{lpha_d}\cdots(-E_1)^{lpha_1}$$

and use commutation property

$$\partial_i E_j = E_j \partial_i, \quad i \neq j.$$

Definition

The least distance δ of a sorted sequence $\gamma_1 \leq \cdots \leq \gamma_n$ is defined by

$$\delta := \min_i \gamma_{i+1} - \gamma_i.$$

Theorem (Atkinson 1994, Mößner & R. 2009)

For a TP grid with least distances $\delta_1, \ldots, \delta_d$, the interpolation error is

$$\|f-\rho\|_{\infty,\Omega}\leq \sum_{j=1}^d L_j \|\partial_j^{n_j}f\|_{\infty,\Omega}, \qquad L_j:=C(\Gamma_j) \|I_{j+1}\|\cdots\|I_d\|,$$

where $||I_j||$ is the Lebesgue constant of the univariate interpolation operator I_j on Γ_j . Note that

$$C({\sf \Gamma}_j) \leq 1/n_j!$$
 and $\|I_j\| \leq n_j\,\delta_j^{1-n_j}.$

[-5mm] Workshop on Multivariate Approxima

Example

For $d=2,\,\mathbf{n}=(4,3)$, and least distances δ_1,δ_2 , we obtain the estimate

$$\|f - p\| \leq rac{3}{4!\delta_2^2} \|\partial_1^4 f\| + rac{1}{3!} \|\partial_2^3 f\|,$$

Example

For d=2, $\mathbf{n}=(4,3)$, and least distances δ_1,δ_2 , we obtain the estimate

$$\|f - p\| \le \frac{3}{4!\delta_2^2} \|\partial_1^4 f\| + \frac{1}{3!} \|\partial_2^3 f\|,$$

and equally

$$\|f - p\| \le \frac{4}{3!\delta_1^3} \|\partial_2^3 f\| + \frac{1}{4!} \|\partial_1^4 f\|.$$

Example

For $d=2, \mathbf{n}=(4,3)$, and least distances δ_1, δ_2 , we obtain the estimate

$$\|f - p\| \le \frac{3}{4!\delta_2^2} \|\partial_1^4 f\| + \frac{1}{3!} \|\partial_2^3 f\|,$$

and equally

$$\|f - p\| \le \frac{4}{3!\delta_1^3} \|\partial_2^3 f\| + \frac{1}{4!} \|\partial_1^4 f\|.$$

Proof

Let
$$I_* := I_{d-1} \cdots I_1$$
 and $E_* := \mathrm{Id} - I_*$. Write

$$E=E_d+I_dE_*,$$

and proceed by induction on d.

Chebyshev nodes

For a TP grid with least distances $\delta_1, \ldots, \delta_d$, the interpolation error is

$$\|f-p\|_{\infty,\Omega}\leq \sum_{j=1}^d L_j \|\partial_j^{n_j}f\|_{\infty,\Omega}, \qquad L_j:=C(\Gamma_j) \|I_{j+1}\|\cdots\|I_d\|,$$

Chebyshev nodes $\gamma_{r,j} := \cos^2\left(\frac{(2j-1)\pi}{4n_j}\right)$ provide close-to-optimal error bounds,

$$\|f-p\| \leq \sum_{j=1}^{d} \frac{2^{2d+1}}{(n_j-1)! 4^{n_j+j}} \|\partial_j^{n_j} f\|.$$

Definition

The least distance $\delta[m]$ skipping m nodes is defined by

$$\delta[m] := \min_{i} \gamma_{i+1+m} - \gamma_i.$$

Theorem (Mößner & R. 2009)

Let $\mathbf{m} \in \mathbb{N}_0^d$ be chosen such that

$$\langle \mathbf{m}, \mathbf{n}^{-1} \rangle := \frac{m_1}{n_1} + \dots + \frac{m_d}{n_d} < 1.$$

For a TP grid with least distances $\delta_1[m_1], \ldots, \delta_d[m_d]$ bounded by $\delta_r[m_r] \geq \overline{\delta} > 0$, the interpolation error is bounded by

$$\|f-p\|_{\infty,\Omega}\leq c(ar{\delta})\sum_{j=1}^d \|\partial_j^{n_j}f\|_{\infty,\Omega}$$

Ulrich Reif

[-5mm] Workshop on Multivariate Approximation

Definition

The least distance $\delta[m]$ skipping m nodes is defined by

$$\delta[m] := \min_{i} \gamma_{i+1+m} - \gamma_i.$$

Let $\mathbf{m} \in \mathbb{N}_0^d$ be chosen such that

$$\langle \mathbf{m}, \mathbf{n}^{-1} \rangle := \frac{m_1}{n_1} + \dots + \frac{m_d}{n_d} < 1.$$

For a TP grid with least distances $\delta_1[m_1], \ldots, \delta_d[m_d]$ bounded by $\delta_r[m_r] \geq \overline{\delta} > 0$, the interpolation error is bounded by

$$\|\partial^{lpha}(f-p)\|_{\infty,\Omega} \leq c(ar{\delta}) \sum_{j=1}^{d} \|\partial_{j}^{n_{j}}f\|_{\infty,\Omega}, \quad \langle lpha, \mathbf{n}^{-1}
angle < 1.$$

Ulrich Reif

-5mm] Workshop on Multivariate Approxima

Proof

Use embedding theorem in anisotropic Sobolev spaces,

$$\|\partial^{\alpha}f\|_{\infty} \leq c_1\Big(\|f\|_{\infty} + \sum_{j=1}^{d} \|\partial_j^{n_j}f\|_{\infty}\Big), \quad \frac{\alpha_1}{n_1} + \cdots + \frac{\alpha_d}{n_d} < 1,$$

and the mean value theorem for divided differences to show that

$$\|I_rf\|_{\infty} \leq c_2(\delta_r)\Big(\|f\|_{\infty} + \|\partial_r^{n_r}f\|_{\infty}\Big).$$

Consider $f(x, y) := (x + y)^{11/2}$, $(x, y) \in [0, 1]^2$ and order $\mathbf{n} = (5, 5)$:

The estimate

$$\|f - p\| \le \frac{\|\partial_1^5 f\|}{5!} + \frac{\|\partial_2^5 f\|}{5!} + \frac{\|\partial_1^5 \partial_2^5 f\|}{5! \cdot 5!}$$

does not apply since $\partial_1^5 \partial_2^5 f$ is unbounded.

Example

Consider $f(x, y) := (x + y)^{11/2}$, $(x, y) \in [0, 1]^2$ and order $\mathbf{n} = (5, 5)$:

For $\Gamma_1 = \Gamma_2 = [0, \varepsilon, 2\varepsilon, 3\varepsilon, 1]$, the interpolation error is unbounded,

$$\|f-p\|\geq rac{1}{50\sqrt{arepsilon}}.$$

 $\langle \mathbf{m}, \mathbf{n}^{-1}
angle = 4/5 < 1 \quad \text{but} \quad \delta_1[2] = \delta_2[2] = 1/(3\varepsilon).$

• For m = (3, 3), we have

 $\delta_1[3] = \delta_2[3] = 1 \quad \text{but} \quad \langle \mathbf{m}, \mathbf{n}^{-1} \rangle = 6/5 > 1.$

Example

Consider
$$f(x, y) := (x + y)^{11/2}$$
, $(x, y) \in [0, 1]^2$ and order $\mathbf{n} = (5, 5)$:

For $\Gamma_1=[0,0,0,0,1]$ and $\Gamma_2=[0,0,1/2,1/2,1],$ the interpolation error is bounded,

$$\|f-p\|\approx 0.32.$$

Indeed, for $\mathbf{m} = (3, 1)$, we have

$$\langle \mathbf{m}, \mathbf{n}^{-1} \rangle = 4/5 < 1$$
 and $\delta_1[3] = 1, \, \delta_2[1] = 1/2.$

Fundamental question

Given a function f defined on some domain $\Omega \subset \mathbb{R}^d$, and a subspace \mathbb{P}_* of polynomials, how well can f be approximated by a polynomial $p \in \mathbb{P}_*$?

Fundamental question

Given a function f defined on some domain $\Omega \subset \mathbb{R}^d$, and a subspace \mathbb{P}_* of polynomials, how well can f be approximated by a polynomial $p \in \mathbb{P}_*$?

The answer will depend on

- the subspace of polynomials
- the regularity of f
- the geometry of Ω

Theorem (Bramble and Hilbert 1971)

Let $\Omega \subset [0,1]^d$ be a connected domain with Lipschitz boundary.

$$\|f-\pi\| \leq c(\Omega) \sum_{|\alpha|=n} \|\partial^{\alpha}f\|_{L^{p}(\Omega)}.$$

- Main work done by Morrey (1966).
- Proof non-constructive.
- Dependence of constant on the shape of $\boldsymbol{\Omega}$ not specified .

Theorem (Dupont and Scott 1980)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. some ball.

Ulrich Reif

Theorem (Dupont and Scott 1980)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. some ball.

$$\|f-\pi\| \leq c(\Omega) \sum_{|\alpha|=n} \|\partial^{\alpha}f\|_{L^{p}(\Omega)}.$$

- π defined as averaged Taylor polynomial.
- Similar proof technique used for Sobolev embedding theorems.
- Dependence of constant on the shape of Ω not specified explicitly.

Theorem (Durán 1983, Dechevski and Wendland 2006)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. some ball.

$$\|f-\pi\|\leq c(\Omega)\sum_{|lpha|=n}\|\partial^{lpha}f\|_{L^p(\Omega)}.$$

- π defined as averaged Taylor polynomial.
- Dependence of constant on the shape of Ω specified explicitly.

Theorem (Dechevski and Quak 1990)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. a single point.

Theorem (Dechevski and Quak 1990)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. a single point.

$$\|f-\pi\|\leq c(\Omega)\sum_{|lpha|=n}\|\partial^{lpha}f\|_{L^p(\Omega)},\quad p>d.$$

- π defined as averaged Taylor polynomial.
- Dependence of constant on the shape of Ω specified explicitly.

Theorem (Verfürth 1999)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. a single point.

$$\|f-\pi\| \leq c(\Omega) \sum_{|\alpha|=n} \|\partial^{\alpha}f\|_{L^p(\Omega)}, \quad p \geq 2.$$

- Based on Poincaré inequality.
- π defined by mean value interpolation.
- Dependence of constant on the shape of Ω specified explicitly.

Theorem (Thrun 2003)

Let $\Omega \subset [0,1]^d$ be star-shaped wrt. a single point.

$$\|f-\pi\| \leq c(\Omega) \sum_{|\alpha|=n} \|\partial^{\alpha}f\|_{L^p(\Omega)}, \quad p \geq 1.$$

- Based on Poincaré inequality.
- π defined by mean value interpolation.
- Dependence of constant on the shape of Ω specified explicitly.

Theorem (R. 2009)

Let $\Omega \subset [0,1]^d$

• be bounded by a finite number of axis-aligned graphs,

• contain some box B.

Given $f \in W_p^n(\Omega)$, define the polynomial $\pi \in \mathbb{P}_n$ of coordinate order $\mathbf{n} \in \mathbb{N}^d$ by

$$\pi := \sum_{\alpha < \mathbf{n}} \langle f, q_{\alpha} \rangle_{B} q_{\alpha},$$

where the q_{α} are tensor product Legendre polynomials on B. Then

$$\|f-\pi\|_{L^p(\Omega)}\leq \sum_{j=1}^d c_j(\Omega,\mathbf{n}) \left\|\partial_j^{n_j}f\right\|_{L^p(\Omega)}, \quad p\geq 1.$$

Let $Y \subset [0,1]^{d-1}$ be measurable, and $\varphi: Y \to [r,R]$ be continuous.

Let $Y \subset [0,1]^{d-1}$ be measurable, and $\varphi : Y \to [r,R]$ be continuous. Then

$$\|\Delta\|_{L^p(\Phi^+)}\leq \gamma_1\,\|\Delta\|_{L^p(\Phi^-)}+\gamma_2\,\|\partial_d^{n_d}\Delta\|_{L^p(\Phi)},$$

where the constants γ_1, γ_2 depend only on R/r, and \mathbf{n}, p .

Recursive construction of domain Ω :

• Start with some box $\Omega_0 := B \subset \mathbb{R}^d$,

Recursive construction of domain Ω :

- Start with some box $\Omega_0 := B \subset \mathbb{R}^d$,
- For j = 1, ..., J do: Choose some graph domain Φ_j and an axis-aligned isometry I_j such that

$$I_j(\Phi_j^-) \subset \Omega_{j-1}$$
 and set $\Omega_j := \Omega_{j-1} \cup I_j(\Phi_j).$

Recursive construction of domain Ω :

- Start with some box $\Omega_0 := B \subset \mathbb{R}^d$,
- For j = 1, ..., J do: Choose some graph domain Φ_j and an axis-aligned isometry I_j such that

$$I_j(\Phi_j^-) \subset \Omega_{j-1}$$
 and set $\Omega_j := \Omega_{j-1} \cup I_j(\Phi_j).$

- Start with some box $\Omega_0 := B \subset \mathbb{R}^d$,
- For j = 1, ..., J do: Choose some graph domain Φ_j and an axis-aligned isometry I_i such that

$$I_j(\Phi_j^-) \subset \Omega_{j-1}$$
 and set $\Omega_j := \Omega_{j-1} \cup I_j(\Phi_j)$.
• Set $\Omega := \Omega_J$

Ulrich Reif

op on Multivariate Approxim

Recursive construction of domain Ω :

- Start with some box $\Omega_0:=B\subset \mathbb{R}^d$,
- For j = 1, ..., J do: Choose some graph domain Φ_j and an axis-aligned isometry I_j such that

$$I_j(\Phi_j^-) \subset \Omega_{j-1}$$
 and set $\Omega_j := \Omega_{j-1} \cup I_j(\Phi_j).$

• Set $\Omega := \Omega_J$

Proof of Theorem:

- Error $\Delta := f \pi$ is small on box Ω_0 by construction.
- Control error propagation $\|\Delta\|_{L^p(\Omega_{j-1})} \to \|\Delta\|_{L^p(\Omega_j)}$ by means of the lemma.

Poincaré inequality

Theorem (R. 2009)

Let $\Omega \subset [0,1]^d$

• be bounded by a finite number of axis-aligned graphs,

• contain some box B.

Given $f \in W^1_p(\Omega)$, define the constant $\pi \in \mathbb{P}_1$ by

$$\pi := \frac{1}{\operatorname{vol} B} \int_B f,$$

$$\|f-\pi\|_{L^p(\Omega)}\leq c(\Omega)\,\|
abla f\|_{L^p(\Omega)},\quad p\geq 1.$$

Poincaré inequality

Theorem (R. 2009)

Let $\Omega \subset [0,1]^d$

• be bounded by a finite number of diffeomorphic images of graphs,

• contain some box B.

Given $f \in W^1_p(\Omega)$, define the constant $\pi \in \mathbb{P}_1$ by

$$\pi := \frac{1}{\operatorname{vol} B} \int_B f,$$

$$\|f-\pi\|_{L^p(\Omega)}\leq c(\Omega)\,\|
abla f\|_{L^p(\Omega)},\quad p\geq 1.$$

Lemma

Let

- Φ, Φ^-, Φ^+ be defined as before,
- $T: \Phi \to \mathbb{R}^d$ be a diffeomorphism.

Then

$$\|\Delta\|_{L^p(\mathcal{T}(\Phi^+))} \leq \gamma_1 \|\Delta\|_{(L^p(\mathcal{T}(\Phi^-)))} + \gamma_2 \|\nabla\Delta\|_{L^p(\mathcal{T}(\Phi))},$$

where the constants γ_1, γ_2

- depend only on r, R and $\operatorname{cond}(T) := \|DT\|_{\infty} \cdot \|DT^{-1}\|_{\infty}$,
- can be computed explicitly.

Poincaré inequality

Recursive construction of Ω :

- Start with some box $\Omega_0:=B\subset \mathbb{R}^d$,
- For j = 1, ..., J do: Choose some φ_j -domain Φ_j and a diffeomorphism T_j such that

$$\mathcal{T}_j(\Phi_j^-)\subset\Omega_{j-1} \quad \text{and set} \quad \Omega_j:=\Omega_{j-1}\cup I_j(\Phi_j).$$

• Set $\Omega := \Omega_J$

Proof of Theorem:

- Error $\Delta := f \pi$ is small on box Ω_0 by construction.
- Control error propagation $\|\Delta\|_{L^p(\Omega_{j-1})} \to \|\Delta\|_{L^p(\Omega_j)}$ by means of the lemma.

Theorem (R. 2009)

Let $\Omega \subset [0,1]^d$

• be bounded by a finite number of diffeomorphic images of graphs,

• contain some box B.

Given $f \in W_p^n(\Omega)$, define the polynomial $\pi \in \mathbb{P}_n$ of total order n by

$$\int_{B} \partial^{\alpha} f = \int_{B} \partial^{\alpha} \pi, \quad |\alpha| < n.$$

$$\|f-\pi\|_{L^p(\Omega)}\leq c(\Omega,n)|f|_{W^n_p(\Omega)},\quad p\geq 1,\,\,|lpha|\leq n.$$

Theorem (R. 2009)

Let $\Omega \subset [0,1]^d$

• be bounded by a finite number of diffeomorphic images of graphs,

• contain some box B.

Given $f \in W_p^n(\Omega)$, define the polynomial $\pi \in \mathbb{P}_n$ of total order n by

$$\int_{B} \partial^{\alpha} f = \int_{B} \partial^{\alpha} \pi, \quad |\alpha| < n.$$

$$\|\partial^{lpha}(f-\pi)\|_{L^p(\Omega)}\leq c(\Omega,n)\,|f|_{W^n_p(\Omega)},\quad p\geq 1,\;|lpha|\leq n.$$

Generalizations:

• Let
$$P: W_p^n(\Omega) \to \mathbb{P}_n$$
 be a Hölder-continuous projector,
 $\|P(f) - P(g)\|_{L^p(\Omega)} \le L \|f - g\|_{L^p(\Omega)}^s, \quad 0 < s \le 1.$

$$\|\partial^lpha(f-P(f))\|_{L^p(\Omega)}\leq c(\Omega,n)\,|f|^s_{W^n_p(\Omega)},\quad p\geq 1,\,\,|lpha|\leq n.$$

Generalizations:

• Let $P: W_p^n(\Omega) \to \mathbb{P}_n$ be a Hölder-continuous projector, $\|P(f) - P(g)\|_{L^p(\Omega)} \le L \|f - g\|_{L^p(\Omega)}^s, \quad 0 < s \le 1.$

Then

$$\|\partial^{lpha}(f-P(f))\|_{L^p(\Omega)}\leq c(\Omega,n)\,|f|^s_{W^n_p(\Omega)},\quad p\geq 1,\,\,|lpha|\leq n.$$

• Replace the total order spaces \mathbb{P}_n by any D-invariant subspace \mathbb{P}_* of polynomials.

The Dahmen-DeVore-Scherer error estimate

$$\min_{s} \|f-s\|_{\Omega,p} \leq C \sum_{i=1}^{d} h_i^{n_i} \|\partial_i^{n_i}f\|_{\Omega,p}$$

leaves many questions open.

2d example

- Observation: constant C in error estimate depends on h_1/h_2 .
- Reason: B-splines with disconnected support.
- Idea: The space of diversified B-splines contains a seperate copy of B_i for each connected component of supp B_i ∩ Ω.

Theorem (R., Sissouno '14, '15)

Let $\Omega \subset \mathbb{R}^2$ be a domain bounded by a finite number of axis-aligned Lipschitz graphs. There exists a constant C depending only on the order **n** and Ω with

$$\inf_{s\in\mathcal{S}^*} \|f-s\|_p \leq C \sum_{i=1}^2 h_i^{n_i} \|\partial_i^{n_i}f\|_p$$

for any $f \in W_p^{\mathbf{n}}(\Omega)$, where S^* is a space of diversifed B-splines of order \mathbf{n} and knots with maximal spacing h_1, h_2 .

A counterexample in 3d

- Domain $\Omega := \{ \mathbf{x} : (x_1 x_2)^2 + (x_1 + x_2)^4 + (1 x_3)^2 < 1 \}.$
- Order $\mathbf{n} = (n, n, n)$, where $n \ge 2$.
- Knots $T_1 := T_2 := h\mathbb{Z}, T_3 := h^5\mathbb{Z}.$
- Function $f_h(x_1, x_2, x_3) := x_2^{2n-2}((2n-1)x_1 (n-1)x_2)\exp(-x_3/h^4)$.
- Error $||f_h s||_{\infty} \geq \frac{C}{h+h^4} \sum_{i=1}^3 h_i^{n_i} ||\partial_i^{n_i} f_h||_{\infty}$.

[-5mm] Workshop on Multivariate Approxima

- A better understanding of approximation on domains
 - will narrow the gap between multivariate approximation and applications,
 - requires more basic research.