En / Ru

Oganesyan Kristina Artakovna

E-mail:


Curriculum vitae


Websites: orcid mathnet


Education:

→ 2013-2019 – Faculty of Mechanics and Mathematics, Lomonosov Moscow State University;

→ 2019-2023 – graduate school of the Department of Functional Analysis, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University; scientific advisor M.I. Dyachenko;

→ 2019-2023 – graduate school of the Universitat Autònoma de Barcelona; scientific advisor S.Yu. Tikhonov;

→ 2023 – PhD Thesis "Estimates and inequalities for trigonometric series with monotone coefficients" (Steklov's institute).

→ 2024 – PhD Thesis "Three problems in harmonic analysis and approximation theory" (Universitat Autònoma de Barcelona).


Research Interests: Harmonic analysis, Number theory, Combinatorics.


Publications:


2023

→ K. Oganesyan, "Bounds for the number of multidimensional partitions", arXiv.

→ K. Oganesyan, "Two-dimensional Hardy-Littlewood theorem for functions with general monotone Fourier coefficients", arXiv.

→ K. Oganesyan, "John-Nirenberg inequality for Riemann type series", arXiv.

→ M.I. Dyachenko, K.A. Oganesyan, "Counterexamples to the Hardy–Littlewood Theorem for Generalized Monotone Sequences", Math. Notes, 113:3 (2023), 458–463, DOI.


2022

→ K. Oganesyan, "Cosine polynomials with restrictions on their algebraic representation", Journal of Approximation Theory, 281–282 (2022), 105802, DOI.


2021

→ K. A. Oganesyan, "Uniform convergence criterion for non-harmonic sine series", Sb. Math., 212:1 (2021), 70–110, DOI.


2020

→ K. A. Oganesyan, "A Functional Inequality for Sine Series", Math. Notes, 107:3 (2020), 531–533, DOI.

→ K. Oganesyan, "The sets of positivity of sine series with monotone coefficients", Acta Mathematica Hungarica, 162(2) (2020), 705–721, DOI.


2018

→ K.A. Oganesyan, "The Measure of the Set of Zeros of the Sum of a Nondegenerate Sine Series with Monotone Coefficients in the Closed Interval \([0,\pi]\)", Math. Notes, 103:4 (2018), 621–625, DOI.

→ K.A. Oganesyan, "Generalized double Fourier sine-series", Moscow University Mathematics Bulletin, 73:1 (2018), 9–16, DOI.