Международная конференция "Dispersion and fixed volume discrepancy"
Лаборатория «Многомерная аппроксимация и приложения» совместно с Московским Центром фундаментальной и прикладной математики и университетом Иоганна Кеплера (Линц) проводит 13 декабря в онлайн-формате (в Zoom) международную однодневную конференцию "Dispersion and fixed volume discrepancy". Приглашаются все желающие.
Регистрационная форма для получения ссылки на Zoom
Программа и аннотации файлом PDF
Программа конференции (московское время):
Понедельник, 13 декабря
→ 17:20 Vladimir Temlyakov, "Smooth fixed volume discrepancy, dispersion, and related problems", видео;
Abstract
It will be an introductory type lecture.
I'll begin with the classical concepts of numerical integration and discrepancy.
Then, I'll proceed to the concepts of smooth discrepancy and smooth fixed volume discrepancy.
Results on the smooth fixed volume discrepancy for specific sets of points (Fibonacci, Frolov) will be discussed.
Also, application of these results for dispersion will be discussed.
→ 18:20 Nastya Rubtsova, "On the fixed volume discrepancy of the Korobov point sets", видео;
Abstract
We will discuss the fixed volume discrepancy of the Korobov point sets in the unit cube.
It was observed recently that this new characteristic allows us to obtain optimal rate of dispersion from numerical integration results.
So we study this new version of discrepancy, which seems to be interesting by itself.
Our work extends recent results by V. Temlyakov and M. Ullrich on the fixed volume discrepancy of the Fibonacci point sets.
→ 19:00 Alexander Litvak, "On the minimal dispersion in the unit cube", видео;
Abstract
We improve known upper bounds for the minimal dispersion of a point set in the unit cube and its inverse.
Some of our bounds are sharp up to logarithmic factors. The talk is partially based on a joint work with G. Livshyts.
→ 20:00 Boris Bukh, "Dispersion in a fixed dimension. Part 1", видео;
Abstract
The dispersion \(\text{disp}(S)\) of an \(n\)-set \(S\) in \([0,1]^d\) is the volume of
the largest empty axis-parallel box in \([0,1]^d\). The minimal dispersion
\(\text{disp}(n, d)\) is the infimum of \(\text{disp}(S)\) among all possible \(S\). It is known
that, for fixed dimension \(d\), \(\text{disp}(n, d) \sim c_d/n\) when \(n\) is large. We prove
that \(\Omega(d)\leq c_d\leq O(d^2 \log{d})\). Furtheremore, the set attaining
the upper bound can be generated in linear time. We use the same ideas to
construct digital almost nets, which are an approximate version of
\((t,m,s)\)-nets, that hit all the dyadic boxes of proper volume not just once
but approximately the expected number many times.
In part I, we shall describe most of the results, and explain the lower
bounds. Part II will be primarily devoted to constructions.
→ 21:00 Ting-Wei Chao, "Dispersion in a fixed dimension. Part 2", видео.
Abstract
The dispersion \(\text{disp}(S)\) of an \(n\)-set \(S\) in \([0,1]^d\) is the volume of
the largest empty axis-parallel box in \([0,1]^d\). The minimal dispersion
\(\text{disp}(n, d)\) is the infimum of \(\text{disp}(S)\) among all possible \(S\). It is known
that, for fixed dimension \(d\), \(\text{disp}(n, d) \sim c_d/n\) when \(n\) is large. We prove
that \(\Omega(d)\leq c_d\leq O(d^2 \log{d})\). Furtheremore, the set attaining
the upper bound can be generated in linear time. We use the same ideas to
construct digital almost nets, which are an approximate version of
\((t,m,s)\)-nets, that hit all the dyadic boxes of proper volume not just once
but approximately the expected number many times.
In part I, we shall describe most of the results, and explain the lower
bounds. Part II will be primarily devoted to constructions.
Оргкомитет:
→ В.Н. Темляков (сопредседатель)
→ Mario Ullrich (сопредседатель)
→ Е.Д. Косов (уч. секретарь)
→ В.Е. Подольский
Контакты: approx.lab.msu@gmail.com